Показывает связь углеводов с белками термин – 43.Катаболизм основных пищевых веществ — углеводов, жиров, белков. Понятие о специфических путях катаболизма и общих путях катаболиз­ма.

Гликопротеин связь углевода с белком

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English     Гликопротеины отличаются от протеогликанов, как видно уже из их названий, числом углеводных звеньев на единицу длины (или молекулярной массы) основной белковой цепи в гликопротеинах преобладает белок, а в протеогликанах — углеводы. Термин углевод-белковый комплекс применяется для молекул, которые содержат белок и углеводы, связанные нековалентными (обычно ионными) связями. О номенклатуре гликозаминогликанов и гликопротринпв см. [7]. [c.216]
    Как видно из приведенных в табл. 25.3.1 данных, в миелине отношение липид белок выше, чем в других мембранах это соответствует специфической функциональной роли миелина. Напротив, для протекания высокоэффективных процессов окисления во внутренней мембране митохондрий необходимо присутствие нескольких ферментов и отношение липид белок у нее ниже. В мембране эритроцитов содержится относительно большое количество углеводов. Основной гликопротеин мембраны эритроцитов, гликофорин, как было показано [6], ориентирован на поверхности мембраны так, что Л -концевая часть его полипептидной цепи, несущая все ковалентно связанные остатки углеводов, выступает во внешнюю среду такими поверхностными олигосахаридами являются некоторые групповые антигены крови и рецепторы, включая рецептор вируса гриппа. Схематическое изображение возможного расположения белков, липидов и углеводов в биологической мембране, приведенное на рис. 25.3.1, основано на жидкомозаичной модели [7]. Полярные молекулы липидов образуют бимолекулярный слой (см. разд. 25.3.3), тогда как белки могут быть или связаны с поверхностью (так называемые внешние белки), или внедрены в бислой (так называемые внутренние или интегральные белки). В некоторых случаях белок может пронизывать бислой. Жидкомозаичная модель завоевала всеобщее признание предполагают, что мембрана в физиологических условиях является текучей, а не статичной. Так, липидные и белковые компоненты в изолированных 
[c.109]

Смотреть страницы где упоминается термин Гликопротеин связь углевода с белком: [c.491]    [c.493]    [c.105]    [c.336]    [c.84]    [c.29]   

Углеводы успехи в изучении строения и метаболизма (1968) — [ c.244 ]


© 2019 chem21.info Реклама на сайте

2.5 Взаимосвязь белкового и углеводного обменов

 

 

 

 

 

O

 

 

 

диацилглицерол-

 

 

 

 

 

 

 

O

O

 

Ch3

O C R1

 

 

 

O

 

Ch3

O

C R1

 

 

 

O ацилтрансфераза

 

R2

С O

HC

+

R3

 

С

 

R2

С O

HC

 

 

 

O

 

 

 

 

 

 

 

 

 

 

Ch3

 

OH

 

 

SКоА

 

 

Ch3

 

O

C

 

R3

 

 

 

 

 

 

 

 

 

 

1,2-диацилглицерол

 

 

НS-КоА

 

триацилглицерол

ацил-КоА

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Связующим звеном белкового и углеводного объемов является цикл трикарбоновых кислот. Продукты гликолиза и окислительного расщепление углеводов в ЦТК – пировиноградная, α-кетаглутаровая, щавелевоуксусная кислота в результате аминирования и переаминирования образуют многие аминокислоты, используемые для синтеза белка. Из фосфоенолпирувата (гликолиз) через ряд превращений синтезируется предшественник фенилаланина, тирозина, триптофана – шикимовая кислота. Гистидин образуется из рибозо-5-фосфата (участника пентозофосфатного цикла). Таким образом, продукты расщепления углеводов при аминировании дают аминокислоты, из которых синтезируются белки.

Переход от белков к углеводам начинается с гидролиза белков до аминокислот, которые затем дезаминируются, а выделившиеся кетокислоты (ПВК, α-ке- тоглутарат, оксалоацетат) вступают в ЦТК и через пируват включаются в реакции глюконеогенеза с образованием углеводов. Однако белки по сравнению с углеводами являются для живого организма более ценными соединениями, образующими основу всех клеточных структур, поэтому их превращение в углеводы происходит в природе в небольших масштабах.

Использование белков в процессе дыхания также наблюдается крайне редко, при длительном углеводном дефиците. Активно образуются углеводы из белков и аминокислот у больных сахарным диабетом.

2.6 Взаимосвязь белкового и липидного обменов

Рассмотренные взаимосвязи «белки углеводы» и «углеводы липиды»

дают основание для объединения их в единую цепь «белки углеводы липиды», в которой углеводы являются связующим звеном между белками и липидами.

Один из основных продуктов расщепления липидов – ацетил-КоА, включаясь в ЦТК, образует кетокислоты, аминирование которых дает аминокислоты.

Из другого продукта гидролиза липидов глицерина – в результате цепи превращений синтезируются циклические аминокислоты.

В известной мере возможен и обратный процесс синтеза липидов за счет распадающихся белков. Продукты дезаминирования аминокислот через ЦТК и другие метаболические процессы образуют ПВК, при окислительном декарбоксилировании которого возникает ацетил-КоА – исходное соединение для синтеза жирных кислот и других компонентов липидов.

Из всего вышесказанного видно, что превращения веществ в организме тесно связаны друг с другом. В Приложении А приведена обобщенная схема взаимо-

Глава 6 взаимосвязь обмена углеводов, липидов и белков

Процессы, протекающие в организме животных не хаотичны, а взаимосвязаны и регулируются нейрогуморальными механизмами, придающими химическим процессам нужное направление. В организме не существует самостоятельного обмена углеводов, липидов, белков, нуклеиновых кислот. Все превращения объединены в целостный процесс метаболизма (рис.24). Эти взаимопревращения диктуются физиологическими потребностями организма.

Взаимосвязь различных метаболических путей и циклов осуществляется на уровне узловых метаболитов, важнейшими из которых являются ацетил-КоА, пируват, глюкозо-6-фосфат, фруктозо-6-фосфат, оксалоацетат, аспартат, α-кетоглутарат.

Связь углеводного и липидного обмена происходит на уровне дигидроксиацетонфосфата (ДАФ) и ацетил-КоА. ДАФ, образующийся при гликолизе далее восстанавливается в глицеролфосфат, который в свою очередь вовлекается в синтез триглицеридов. Ацетил-КоА образуется при окислительном декарбоксилирования пирувата и далее в зависимости от нужд организма используется для образования жирных кислот, кетоновых тел, холестерина, желчных кислот, стероидных гормонов. В ходе большинства из этих синтетических процессов используется НАДФН(Н+), основным поставщиком которого является окислительная ветвь пентозофосфатного пути превращения углеводов.

ПФП поставляет также рибозо-5-фосфат, используемый для биосинтеза нулеиновых кислот. Таким образом на уровне данного метаболита прослеживается взаимосвязь углеводного и нуклеинового обмена.

В тоже время следует, однако, указать, что превращение липидов в углеводы носит ограниченный характер и возможно только через ДАФ, который вовлекается в глюконеогенез при недостатке углеводов в организме животных.

Рис. 23. Взаимосвязь различных путей обмена углеводов, липидов и белков в организме

животных.

Связь углеводного и белкового обмена осуществляется на уровне таких метаболитов, как пируват и оксалоацетат, которые в реакциях трансаминирования превращаются соответственно в α-аланин и аспартат. Те, аминокислоты, которые превращаются в глюкозу, получили название глюкогенных. К ним относятся глицин, α-аланин, серин, цистеин, треонин, метионин, валин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, аргинин, гистидин, пролин. Первоначально их безазотистые остатки превращаюся в один из следующих метаболитов – пируват, кетоглутарат, сукцинил-КоА, фумарат, оксалоацетат. Далее оксалоацетат включается в глюконеогенез. Возможен и обратный процесс превращения аминокислот в глюкозу. В этом случае они через пируват и оксалоацетат включаются в глюконеогенез. Но, как и при превращениии липидов в углеводы, здесь также эти процессы носят ограниченный характер.

ОБМЕНА УГЛЕВОДОВ, ЛИПИДОВ И БЕЛКОВ»

  1. Какие соединения называются узловыми метаболитами? Приведите примеры. От чего зависит вовлечение этих метаболитов в тот или иной обменный процесс и как осуществляется эта регуляция?

  2. На уровне каких соединений взаимосвязаны между собой углеводный и липидный обмены? Ответ поясните конкретными примерами.

  3. Укажите соединения, связывающие между собой углеводный и белковый обмены.

  4. Почему превращение липидов и белков в углеводы в организме животных носит ограниченный характер? Ответ аргументированно поясните.

  5. Приведите примеры соединений на уровне который связаны белковый и липидный обмены.

Связь между белками и углеводами

    Рассматривая обмен веществ, мы излагали отдельно обмен белков, обмен жиров, обмен углеводов и т. п. Однако такое деление является искусственным и диктуется исключительно удобством изложения. В действительности обмен веществ в организме протекает как единое целое при тесном взаимодействии и взаимообусловленности отдельных составляющих его процессов. Даже первый этап обмена — переваривание пищи — представляет собой одновременно протекающий процесс распада белков, жиров и углеводов в желудочно-кишечном тракте. Дальнейшие превращения белков, жиров и углеводов в тканях в процессах промежуточного обмена настолько интимно связаны между собой, что для целого организма обмен, например, белков, изолированный от обмена углеводов, является абстракцией. [c.378]
    СВЯЗЬ МЕЖДУ БЕЛКАМИ И УГЛЕВОДАМИ [c.378]

    Одним из наиболее важных типов слабых связей между биологически активными молекулами является водородная связь (гл. 2, разд. А.7). Мы уже говорили о том, какова роль диполь-дипольного взаимодействия этого типа для формирования структуры белков, углеводов и нуклеиновых кислот. Рассмотрим теперь значение водородных связей для биологического растворителя — воды. [c.246]

    Связь между обменом углеводов, жиров и белков [c.414]

    Задачи по органической химии в целом расположены в соответствии с традиционной последовательностью изучения классов органических соединений (углеводороды, спирты, фенолы, карбонильные соединения, карбоновые кислоты, сложные эфиры, жиры, углеводы, амины, аминокислоты, белки, гетероциклы, нуклеиновые кислоты). Однако во многих задачах отражены многочисленные генетические связи между различными классами органических веществ, поэтому соответствие расположения задач традиционному курсу химии в значительной степени условно и относительно. [c.123]

    Пировиноградная кислота является также связующим звеном между обменом углеводов и белков, так как она может образоваться из продуктов превращений ряда аминокислот. С другой стороны, она служит источником синтеза аминокислоты аланина, из которой в результате переаминирования могут образовываться другие аминокислоты  [c.160]

    ТИПЫ СВЯЗЕЙ МЕЖДУ УГЛЕВОДАМИ И БЕЛКАМИ В УГЛЕВОД-БЕЛКОВЫХ КОМПЛЕКСАХ [c.84]

    СВЯЗЬ МЕЖДУ ОБМЕНОМ БЕЛКОВ, ЖИРОВ И УГЛЕВОДОВ [c.378]

    Благодаря такому превращению продуктов обмена углеводов в аминокислоты возникает прямая связь между обменом углеводов и белков. [c.379]

    Курс органической химии характеризуется стройной структурой, взаимосвязью классов соединений углеводороды— спирты — альдегиды — кислоты — сложные эфиры — углеводы — амины — аг/инокислоты — белки. Это обстоятельство позволяет широко применять в системе самостоятельных работ учащ1 хся генетические связи между классами соединений (переход от менее сложного к более сложному и, наоборот, от слолсно о к простому), логические операции, особенно сравнения, снсто . а-тизация и обобщения. [c.153]


    Из аорты человека выделено соединение, состоящее гепарина и белка, которое содержит ковалентную связь и является гликопротеином . После обработки его гиалуронидазой и протеиназами , а также в результате мягкого кислотного гидролиза получены низкомолекулярные гликопептиды 0-ксилозид серина и галактозилксилозид серина , что непосредственно доказывает природу одного из типов связи гепарина с пептидной цепью бглка в гепарин-белковом комплексе. Структура кси-лозида серина была подтверждена встречным синтезом . Таким образом, в настоящее время наличие ковалентной связи между белковой частью и углеводами соединительной ткани можно считать строго доказанным. [c.580]

    В настоящее время установлена совершенно конкретная связь между различными формами обмена. Она выражается в том, что отдельные структурные элементы белков, жиров и углеводов могут превращаться друг в друга после соответствующей химической перестройки. Так, например, аминокислоты используются для синтеза углеводов и наоборот. На этой стороне связи мы остановимся более подробно. [c.378]

    В настоящее время с полной определенностью можно говорить о совершенно конкретной связи между различными формами обмена. Она выражается в том, что отдельные структурные элементы белков, жиров и углеводов могут превращаться друг в друга после соответствующей химической перестройки. Так, например, аминокислоты могут быть использованы для синтеза углеводов и наоборот. Но дать полную картину последовательного хода рассматриваемых превращений пока еще не представляется возможным. [c.360]

    Мукопротеины тина хондропротеинов были найдены не только в хрящах, но также и в сухожилиях, стенках аорты и склере. По поводу тина связи между хондроитинсульфатом и белком, Левин писал Определить способ связи между углеводом и белком просто. Щелочь, слишком слабая, чтобы вызвать расщепление белковой молекулы или углеводного остатка, вызывает разрушение связи между белком и углеводным фрагментом. Поэтому простейшее допущение состоит в том, что в природе соединение осуществляется посредством сложноэфирной связи . Важным вкладом Левина в химию мукопротеинов была его фундаментальная работа о гексоз-аминах. [c.16]

    К. с. рассматривается как определенная характеристика энантиомерных объектов молекулы, имеющие одинаковую последовательность связей между атомами и одинаковое относит, расположение атомов в пространстве, но являющиеся энантиомерными объектами, обладают разл. конфигурациями. К. с. хиральной молекулы может сохраняться при значит, деформации этой молекулы, но переход одного энантиомера в другой всегда означает обращение К.с. Совр. рассмотрение К.с связывает ее с понятием молекулярной топологической формы (МТФ) молекулы, под к-рой понимается геом. фигура (в топологич. смысле), характеризующая пространств, расположение ядер данного объекта в сочетании с особыми точками, как, напр., центр инверсии. К.с. сохраняется при любых деформациях молекулы до тех пор, пока не исчезает хиральность и пока сохраняется МТФ. Учет К.с. необходим при определении строения и планировании синтеза мн. классов прир. соединений, таких, как углеводы, пептиды и белки, антибиотики, алкалоиды и т.д. [c.457]

    Другая крупная проблема состоит во взаимодействиях между белками и другими биохимическими компонентами растений, особенно углеводами, липидами и фенольными соединениями, которые о

Тесты по биологии «Белки.Жиры.Углеводы»

Белки, жиры и углеводы

Вариант I

1. Глицерин входит в состав

а) белков б) жиров в) целлюлозы г) нуклеотидов

2. Жиры состоят из

а) глицерина и высших жирных кислот

б) глюкозы и высших жирных кислот

в) аминокислот и глицерина

г) глицерина и глюкозы

3. В клетке липиды выполняют следующие функции:

а) энергетическую и строительную

б) строительную и ферментативную

в) ферментативную и информационную

г) информационную и энергетическую

4. К полисахаридам относятся

а) глюкоза б) крахмал в) сахароза г) лактоза

5..Посредством какой химической связи соединены между собой аминокислоты в молекуле белка первичной структуры?

А-дисульфидной В-водородной

Б-пептидной Г-ионной

6.Какая часть молекул аминокислот отличает их друг от друга?

А-радикал В-карбоксильная группа

Б-аминогруппа

7.Сколько из известных аминокислот участвуют в синтезе белков?

А-20 В-100

Б-23

8.Какую функцию белки не выполняют в клетке?

А-информационную В-каталитическую

Б-растворителя Г-запасающую

9.Молекулы белков,связывающие и обезвреживающие чужеродные данной клетке вещества ,выполняют фенкцию…

А-защитную В-энергетическую

Б-каталитическую Г-транспортную

10.Углеводы при фотосинтезе синтезируются из:

1)  О2 и Н2О; 2) СО2 и Н2; 3) СО2 и Н2О; 4) СО2 и Н2 О2

  11. В каком случае правильно написана формула молекулы глюкозы?

1)  С5Н12О5;    2)  С6Н10О6;   3) С6Н12О6; 4) С6Н12О

12. Способность верблюдов хорошо переносить жажду объясняется тем, что:

1) заторможена работа их выделительной системы; 2) в ходе окисления резервного жира выделяется вода; 3) у них мощный теплоизолирующий слой, уменьшающий испарение; 4) они не потеют

13. Человеку с лишним весом нужно ограничить потребление

  1. томатов; 2) картофеля; 3) яблок; 4) творога

14. Связи, которые удерживают первичную структуру молекулы белка , называются:

1) водородными; 2) пептидными; 3) гидрофобными; 4) дисульфидными

15. Из предложенных ниже терминов выберите один, соответствующий по смыслу термину, стоящему впереди:

ПОЛИМЕР: 1) радикал; 2) мономер; 3) нуклеотид; 4) белок

16. Установите соответствие между особенностями молекул углеводов и их видами

1) мономер А) целлюлоза

2) полимер Б) глюкоза

3) растворимы в воде

4) не растворимы в воде

5) входят в состав клеточных стенок растений

6) входят в состав клеточного сока растений

Белки, жиры и углеводы

Вариант I I

1. Вторичная структура белка имеет вид:

А. глобулы; Б. несколько соединенных между собой белковых молекул В. спирали;

Г. цепи аминокислотных остатков 2.К растворимым в воде соединениям относятся:

А. липиды;Б. моносахариды;В. полисахариды.

3. При расщеплении больше всего энергии выделяют соединения:

А.липиды;Б. углеводы;В.белки;Г. витамины.

4. Вторичная структура белка имеет вид:

А. глобулы;Б. несколько соединенных между собой белковых молекул;В.спирали;

Г. цепи аминокислотных остатков;

5.Расщепление белков в организме человека завершается
А)выведением углекислого газа,воды и мочевины
Б)накоплением в клетках кислорода
В)превращением тепловой энергии в энергию химических связей
Г) образованием и накоплением антител в крови

6.Вещества, содержащие азот, образуются при биологическом окислении
А)белков
Б)жиров
В)углеводов
Г) глицерина

7.Жиры, как и глюкоза, выполняют в клетке функцию
А)строительную
Б)информационную
В)каталитическую
Г) энергетическую

8.Клетчатка, содержащаяся в сырых овощах и фруктах, употребляемых в пищу человеком, улучшает
А)пищеварение в желудке
Б)расщепление углеводов
В)моторную функцию кишечника
Г) всасывание питательных веществ в кровь

9.К каким соединениям по отношению к воде относятся липиды?

А-гидрофильным Б-гидрофобным

10.Какое значение имеют жиры у животных?

А-структура мембран В-теплорегуляция

Б-источник энергии Г-источник воды Д-все перечисленное

11.В состав какого жизненно важного соединения входит железо?

А-хлорофилла В-ДНК

Б-гемоглобина Г-РНК

12.Как называется органическое вещество,в молекулах которого содержатся атомы С,О,Н,выполняющее энегретическую и строительную функцию?

А-нуклеиновая кислота В-белок

Б-углевод Г-АТФ

13.Какие углеводы относятся к полимерам?

А-моносахариды

Б-дисахариды

В-полисахариды

14.Необходимим для всех химических реакций веществом в клетке,играющим роль растворителя большинства веществ,является…

А-поленуклеотид

Б-полипептид

В-вода

Г-полисахарид

15.Молекулы жиров образуются:

А-из глицерина,высших карбоновых кислот В-из глюкозы

Б-из аминокислот,воды

Г-из этилового спирта,высших карбоновых кислот

Выберите три верных ответа из шести. Запишите выбранные цифры в порядке возрастания

16. Каковы свойства, строение и функции в клетке полисахаридов?

1) Выполняют структурную и запасающую функции

2) выполняют каталитическую и транспортную функции

3) состоят из остатков молекул моносахаридов

4) состоят из остатков молекул аминокислот

5) растворяются в воде

6) не растворяются в воде

Углеводы, связанные с белком — Справочник химика 21

    Гликопротеины отличаются от протеогликанов, как видно уже из их названий, числом углеводных звеньев на единицу длины (или молекулярной массы) основной белковой цепи в гликопротеинах преобладает белок, а в протеогликанах — углеводы. Термин углевод-белковый комплекс применяется для молекул, которые содержат белок и углеводы, связанные нековалентными (обычно ионными) связями. О номенклатуре гликозаминогликанов и гликопротринпв см. [7]. [c.216]
    Понятно, что на химический характер белка оказывают влияние и другие функциональные группы, которые могут присутствовать в радикалах, например, гидроксильные группы и остатки неорганических кислот. В последнем случае белки будут обладать резко выраженным кислотным характером. Так, например, белок казеина содержит остатки фосфорной кислоты. Белки, содержащие в себе, кроме чисто белковых образований, еще другие, определенным образом связанные с ними небелковые частицы, называются сложными белками, или протеидами, в отличие от простых белков, или протеинов. В протеидах могут содержаться не только остатки кислот (как в фосфопротеиде казеине), но и остатки молекул других веществ — углеводов (глюкопротеиды), окрашенных веществ (хромопротеиды, например гемоглобин крови) и т. п. [c.229]

    Вопросы, связанные с промышленным производством всех продуктов, дающих биотехнологии источники углерода и энергии для роста микроорганизмов н биосинтеза, в этой главе подробно рассматриваться не будут. Здесь будут кратко изложены основы технологии наиболее важных веществ, в первую очередь субстратов для биосинтеза микробного белка. К ним относятсяУпара-финовые углеводороды нормального строения етанол, этанол, метан как компонент природного газа и углеводы различного происхождения, прежде всего гидролизаты растительного сырья. Белок одноклеточных можно получать с утилизацией некоторых отходов целлюлозно-бумажного производства, химической и нефтехимической промышленности, которые, однако, не применяются в других процессах микробиологического синтеза. [c.33]

    Очень важно установить, действительно ли одна только ДНК» является тем химическим соединением, которое осуществляет трансформацию, и исключить возможность того, что какой-то-другой фактор, например связанный с ДНК белок или углевод, может также принимать участие в процессах трансформации. Известно, что ДНК очищенного трансформирующего фактора не содержит ни химически улавливаемого, ни серологически обнаруживаемого белка. Кроме того, известно, что этот фактор не инактивируется протеолитическими ферментами, но зато инактивируется дезоксирибонуклеазой. Более того, при гидролизе трансформирующего фактора образуется всего лишь одна аминокислота — глицин, о которой известно, что она возникает при расщеплении аденина. Приведенные данные свидетельствуют, что ДНК является единственным трансформирующим фактором. [c.300]


    ХОНДРОИТИН. Соединительные ткани состоят из волокон коллагена, погруженных в белково-полисахаридный комплекс — белок, ковалентно связанный с углеводом. Наиболее распространенным является полимер, известный под названием хондроитина. В отличие от гликогена углеводная цепь хондроитина не разветвлена, а мономеры соединены в нем р-гликозид-ными связями. Хондроитин резко отличается от других полисахаридов тем, что представляет собой гетерополимер, построенный из чередуюш,ихся остатков с-глюкуроновой кислоты и К-ацетил-в-галактозамина, несущего сульфатную группу. Так называемый хондроитин А содержит эту группу при атоме С4 аминосахара в настоящее время для него принято название хондроитин-4-сульфат. Аналогичным образом хондроитин С — это хондро-итин-6-сульфат. [c.463]

    Вы получили несколько линий мутантных клеток, дефектных по способности присоединять углеводы к экспортируемым белкам. Используя белок, содержащий только N-связанные сложные олигосахариды и легко поддающийся очистке, вы проанализировали состав этих олигосахаридов в клетках разных мутантов. Оказалось, что все мутанты различаются по качественному и количественному составу олигосахаридов (табл. 8-3). [c.119]

    Четвертичные структуры белка образуются тогда, когда молекула белка включает в свою структуру химически связанные комплексы хлорофилла, протопорфирина железа (II), или гема, группировки из ионов металлов (Ре, Си, 2п, Со, Мо и др.), углеводы, фосфорную кислоту, жиры и т. д. В этом случае белки являются не простыми, а сложными и называются протеидами. К числу протеидов (сложных белков) относятся хромопротеиды (белок связан с молекулой — хромофором), гликопротеиды (белок связан с углеводами), липопротеиды (белок связан с липидом), фосфопротеиды (белок этерифицирован фосфорной кислотой, как, например, в казеине молока), нуклео-протеиды (белок связан с нуклеиновой кислотой). Небелковая часть молекулы протеида называется простетической группой. [c.722]

    Как видно из приведенных в табл. 25.3.1 данных, в миелине отношение липид белок выше, чем в других мембранах это соответствует специфической функциональной роли миелина. Напротив, для протекания высокоэффективных процессов окисления во внутренней мембране митохондрий необходимо присутствие нескольких ферментов и отношение липид белок у нее ниже. В мембране эритроцитов содержится относительно большое количество углеводов. Основной гликопротеин мембраны эритроцитов, гликофорин, как было показано [6], ориентирован на поверхности мембраны так, что Л -концевая часть его полипептидной цепи, несущая все ковалентно связанные остатки углеводов, выступает во внешнюю среду такими поверхностными олигосахаридами являются некоторые групповые антигены крови и рецепторы, включая рецептор вируса гриппа. Схематическое изображение возможного расположения белков, липидов и углеводов в биологической мембране, приведенное на рис. 25.3.1, основано на жидкомозаичной модели [7]. Полярные молекулы липидов образуют бимолекулярный слой (см. разд. 25.3.3), тогда как белки могут быть или связаны с поверхностью (так называемые внешние белки), или внедрены в бислой (так называемые внутренние или интегральные белки). В некоторых случаях белок может пронизывать бислой. Жидкомозаичная модель завоевала всеобщее признание предполагают, что мембрана в физиологических условиях является текучей, а не статичной. Так, липидные и белковые компоненты в изолированных [c.109]

    В настоящее время практически все белкн системы комплемента выделены в чистом виде и охарактеризованы, установлена полная первичная структурв многих из них. Впервые рвботы по изучению структуры компонентов компл

Углеводы — Википедия

Углево́ды — органические вещества, содержащие карбонильную группу и несколько гидроксильных групп[1]. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.

Сахара́  — другое название низкомолекулярных углеводов: моносахаридов, дисахаридов и олигосахаридов.

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями.

Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных[1].

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы — дисахариды, от двух до десяти единиц — олигосахариды, а более десяти — полисахариды. Моносахариды быстро повышают содержание сахара в крови и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов.

Моносахариды[править | править код]

Распространённый в природе моносахарид — бета-D-глюкоза.

Моносахари́ды (от др.-греч. μόνος ‘единственный’, лат. saccharum ‘сахар’ и суффикса -ид) — простейшие углеводы, не гидролизующиеся с образованием более простых углеводов — обычно представляют собой бесцветные, легко растворимые в воде, плохо — в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения[2], одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральный pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы[2]. Моносахариды — стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (C6H12O6) — структурная единица многих дисахаридов (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов[2].

Дисахариды[править | править код]

Дисахари́ды (от др.-греч. δία ‘два’, лат. saccharum ‘сахар’ и суффикса -ид) — сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединены друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных[3].

Олигосахариды[править | править код]

О́лигосахари́ды (от греч. ὀλίγος — немногий) — углеводы, молекулы которых синтезированы из 2—10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее[3]. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных — гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.

Среди природных трисахаридов наиболее распространена рафиноза — невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы — в больших количествах содержится в сахарной свёкле и во многих других растениях[3].

Полисахариды[править | править код]

Полисахари́ды — общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков[4].

Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения[2].

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахма́л (C6H10O5)n — смесь двух гомополисахаридов: линейного — амилозы и разветвлённого — амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде[2]. Молекулярная масса 105—107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10—30 %, амилопектина — 70—90 %. Молекула амилозы содержит в среднем около 1000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20—30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации — декстрины (C6H10O5)p, а при полном гидролизе — глюкоза[4].

Структура гликогена

Гликоге́н (C6H10O5)n — полисахарид, построенный из остатков альфа-D-глюкозы — главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105—108 Дальтон и выше[4]. В организмах животных является структурным и функциональным аналогом полисахарида растений — крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован — сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы[2]. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100—120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) — наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном — D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс[4]. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу[2].

Хити́н — структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозидными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой[2].

Пекти́новые вещества́ — полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот способны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид»[2].

Мурами́н (лат. múrus — стенка) — полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе[2].

Декстра́ны — полисахариды бактериального происхождения — синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»: Полиглюкин и другие)[2].

Слева D-глицеральдегид, справа L-глицеральдегид.

Изомерия (от др.-греч. ἴσος — равный, и μέρος — доля, часть) — существование химических соединений (изомеров), одинаковых по составу и молекулярной массе, различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.

Стереоизомерия моносахаридов: изомер глицеральдегида, у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны, принято считать D-глицеральдегидом, а зеркальное отражение — L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН2ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы — глюкоза, фруктоза, манноза и галактоза — по стереохимической конфигурациям относят к соединениям D-ряда[5].

В живых организмах углеводы выполняют следующие функции:

  1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так, целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих[1].
  2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
  3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК)[6].
  4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды[6].
  5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений[1].
  6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/л глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
  7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

Cx(h3O)y+xO2→xCO2+yh3O, ΔH<0.001{\displaystyle {\mathsf {C_{x}(H_{2}O)_{y}+xO_{2}\rightarrow xCO_{2}+yH_{2}O,\ \Delta H<0.001}}}

В зелёных листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ — оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

xCO2+yh3O→Cx(h3O)y+xO2{\displaystyle {\mathsf {xCO_{2}+yH_{2}O\rightarrow C_{x}(H_{2}O)_{y}+xO_{2}}}}

Обмен углеводов в организме человека и высших животных складывается из нескольких процессов[4]:

  1. Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
  2. Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
  3. Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз — пути расщепления глюкозы в организме.
  4. Взаимопревращение гексоз.
  5. Аэробное окисление продукта гликолиза — пирувата (завершающая стадия углеводного обмена).
  6. Глюконеогенез — синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).

Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, содержит 65% фруктозы и 25-30% глюкозы.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Список наиболее распространенных углеводов[править | править код]

  1. 1 2 3 4 Н. А. Абакумова, Н. Н. Быкова. 9. Углеводы // Органическая химия и основы биохимии. Часть 1. — Тамбов: ГОУ ВПО ТГТУ, 2010. — ISBN 978-5-8265-0922-7.
  2. 1 2 3 4 5 6 7 8 9 10 11 Н. А. Тюкавкина, Ю. И. Бауков. Биоорганическая химия. — 1-е изд. — М.: Медицина, 1985. — С. 349—400. — 480 с. — (Учебная литература для студентов медицинских институтов). — 75 000 экз.
  3. 1 2 3 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 234—235. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8.
  4. 1 2 3 4 5 Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 235—238. — 528 с. — (Учебная литература для студентов медицинских институтов). — 100 000 экз. — ISBN 5-225-01515-8.
  5. Т. Т. Березов, Б. Ф. Коровкин. Биологическая химия: Учебник / Под ред. акад. АМН СССР С. С. Дебова.. — 2-е изд., перераб. и доп. — М.: Медицина, 1990. — С. 226—276. — 528 с. — 100 000 экз. — ISBN 5-225-01515-8.
  6. 1 2 А. Я. Николаев. 9. Обмен и функции углеводов // Биологическая химия. — М.: Медицинское информационное агентство, 2004. — ISBN 5-89481-219-4.
  • Углеводы (рус.) (недоступная ссылка). — строение и химические свойства. Дата обращения 1 июня 2009. Архивировано 25 июля 2001 года.
⛭
Общие:
Геометрия
Моносахариды
Диозы
Триозы
Тетрозы
Пентозы
ГексозыКетогексозы (Псикоза, Фруктоза, Сорбоза, Тагатоза)

Альдогексозы (Аллоза, Альтроза, Глюкоза, Манноза, Гулоза, Идоза, Галактоза, Талоза)

Дезоксисахариды (Фукоза, Фукулоза, Рамноза)
Гептозы
>7
Мультисахариды
Производные углеводов

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *