Трс что такое – ООО «Трансмиссионные системы» (ТРС) — Заводское восстановление АКПП, запчасти и ремонтные решения г. Казань

Cистема ASR / TRC Traction Control System (Трэкшн Контроль)

Трэкшн контроль – что это? Далеко не всякий опытный автомобилист сможет легко и быстро ответить на этот вопрос. Тем не менее, данная система, прочно вошедшая под разными названиями в автомобили различных марок, считается одним из самых эффективных средств активной безопасности, с которым производители связывают ряд надежд в сфере снижения аварийности на дорогах.

Тойота TRC OFF - что это такое

Мы попробуем разобраться в том, что представляет собой современный трэкшн контроль и понять, насколько в действительности он эффективен.

ASR / Traction Control — что это такое

Итак, давайте разберемся, что же такое трэкшен контроль? Говоря простым языком, это система, включающая в себя муфту, перераспределяющую крутящий момент между ведущими колесами автомобиля, антиблокировочную систему, выборочно притормаживающую колеса, а также набор датчиков с блоком управления, координирующего действия этих устройств для гашения заноса автомобиля и пробуксовки колес.

По сути, сегодня трэкшен контроль объединяет в себе возможности противозаносной и противобуксовочной систем, хотя изначально он создавался как эффективный инструмент борьбы с пробуксовкой.

Общеизвестный факт, что первой автомобильной маркой, серийно внедрившей трэкшен-контроль в автомобилях, стала американская компания Buick, представив в 1971 году систему под названием MaxTrac.

Работа системы была ориентирована на препятствование пробуксовке ведущих колес, а управляющий блок посредством датчиков определял пробуксовку и подавал сигнал на уменьшение оборотов двигателя посредством прерывания зажигания в одном или нескольких цилиндрах, то есть, «душил» мотор.

Подобная схема оказалась весьма живучей и сегодня используется практически всеми автопроизводителями. Впрочем, на тот момент противобуксовочная система не обладала функцией динамической стабилизации автомобиля.

Существенную роль в развитие системы Traction Control (сокращенно — TRC) внесли японские инженеры концерна Toyota. Именно им одним из первых пришла в голову мысль использовать принципы, заложенные в систему, для стабилизации автомобиля в случае возникновения аварийной ситуации.

Видео — компания Тойота рассказывает как работает трэкшн контроль:

Отличием TRC от Toyota стал комплексный подход к проектированию системы, в которую вошли датчики угловой скорости в колесах автомобиля, отслеживание скорости вращения каждого из колес, а также использование комплексных методов снижения тяги.

В первых версиях легковых автомобилей уменьшение тяги производилось также за счет «душения» мотора, а в современных версиях системы, устанавливаемой на современные кроссоверы (к примеру, популярный Toyota RAV-4), выборочное уменьшение скорости вращения того или иного колеса осуществляется с помощью штатной вискомуфты, которая получает сигналы от центрального блока управления системы.

При этом вискомуфта не уменьшает момент на буксующем колесе, а пропорционально увеличивает величину крутящего момента на колесо, имеющее лучшее сцепление с дорогой. Таким «силовым» способом автомобиль возвращается на требуемую траекторию и при этом не возникает опасности развития заноса, но уже в противоположную от скользкой поверхности сторону.

Преимущества и недостатки современных систем Traction Control System

Современные системы трэкшен контроля имеют ряд достоинств и недостатков. К первым, безусловно, можно отнести большую безопасность езды, ведь система способна сама «распознать» риск возникновения заноса и погасить его развитие.

С другой стороны, подобная «помощь» расслабляет водителя, что может приводить к меньшей осторожности при езде на скользком покрытии. Кроме того, не стоит забывать о ситуациях, когда пробуксовка колес не является злом, а, напротив, способна быть помощником водителя.

К слову, данное утверждение относится вовсе не к любителям дрифта и скоростной езды на гоночных трассах, а тех водителей, которые часто ездят по бездорожью или глубокому снегу. К примеру, противобуксовочная и противозаносная системы способны сыграть злую шутку, если вы решили преодолеть «внатяг» снежную целину.

 

Искусственно ограничивая обороты, система способна заглушить мотор автомобиля в самый ответственный момент, и такой «подарок» закончится поисками трактора. Во избежание таких неприятных ситуаций практически все автопроизводители предусматривают возможность отключения трэкшен контроля, для чего используется отдельная клавиша на центральной консоли автомобиля.

Как правило, на нее нанесено соответствующее обозначение (на тех же кроссоверах Toyota это «TRC off»). Используя клавишу, можно дезактивировать систему с целью успешного преодоления сложного участка.

Использование трэкшен контроля в реальной эксплуатации

Несмотря на то, что многие современные автомобили имеют опцию трэкшен контроля, далеко не все водители знают, как пользоваться данной системой. Давайте попробуем разобраться, как следует использовать traction control system на примере автомобиля Toyota RAV-4.

В нормальном режиме движения, так сказать, «по умолчанию», система TRC на Toyota активирована постоянно. Ее вмешательство в управление на первый взгляд совершенно незаметно, однако при попадании одного или нескольких колес автомобиля на скользкий участок дороги система вступает в действие, «направляя» автомобиль в нужном направлении и препятствую развитию заноса.

На практике это можно заметить по выборочному срабатыванию антиблокировочной системы тормозов, которая сопровождается характерным хрустом, а также снижающейся реакцией на педаль «газа». Кроме того, на приборной панели вспыхивает соответствующий индикатор, сигнализирующий о срабатывании системы.

В автомобилях Тойота TRC OFF — что это за кнопка и как ей пользоваться

Для того чтобы отключить систему стабилизации, как уже и говорилось, водителю потребуется нажать кнопку с надписью «TRC off» на центральной консоли вашей Toyota. Делать это следует максимально осознанно — лишь в том случае, если пробуксовка колес действительно является необходимым условием.

автомобиль Тойота кнопка  TRC OFF что это такое

Помимо вышеуказанной езды на бездорожье, отключать трэкшен контроль имеет смысл также в случаях, если необходим интенсивный разгон автомобиля (например, для преодоления «ходом» сложных участков на дороге.

Стоит отдельно упомянуть тот факт, что в кроссовере Toyota TRC не отключается полностью, то есть, нажатие клавиши «TRC off» лишь кратковременно деактивирует систему. Кроме того, система автоматически включается при достижении скорость в 40 километров в час, о чем сигнализирует надпись «TRC on» на приборной панели.

Соответственно, в случае необходимости повторного отключения кнопку придется нажимать заново. Такая предосторожность производителя оправдывается нормами безопасности, поскольку сегодня именно трэкшен контроль считается одной из самых эффективных систем безопасности.

Собственно говоря, данное утверждение подкрепляется статистикой дорожно-транспортных происшествий в разных странах, а многие независимые организации лоббируют введение законодательных нормативов, обязующих использование систем TRC на всех продаваемых на рынке автомобилях вне зависимости от комплектации.

Итоги

Как видим, трэкшен контроль представляет собой действительно удобную в использовании систему безопасности, которая упрощает жизнь водителя. Возможность принудительного отключения позволяет избежать ситуаций, когда работа TRC может негативно сказаться на управлении автомобилем.

Тем не менее, любая электроника – лишь помощник, ни в коей мере не являющийся гарантией безопасности. Сделать езду по-настоящему безаварийной и грамотной способен лишь сам водитель.

автомобиль Тойота кнопка  TRC OFF что это такое Разбираем так называемый закон о зимних шинах или когда следует менять резину.

Возможно, вас заинтересует схема новой трассы М-11 Москва — Санкт-Петербург.

Предлагаем еще раз вспомнить тему запрещающих дорожных знаков https://voditeliauto.ru/voditeli-i-gibdd/pdd/dorozhnye-znaki/zapreshhayushhie.html с пояснениями эксперта.

Видео — как работает Traction Control System:

Может заинтересовать:

автомобиль Тойота кнопка  TRC OFF что это такое
Сканер для самостоятельной диагностики автомобиля

Добавить свою рекламу

автомобиль Тойота кнопка  TRC OFF что это такое

Как быстро избавиться от царапин на кузове авто

Добавить свою рекламу

автомобиль Тойота кнопка  TRC OFF что это такое
Что дает установка автобаферов?

Добавить свою рекламу

автомобиль Тойота кнопка  TRC OFF что это такое
Зеркало видеорегистратор Car DVRs Mirror

Добавить свою рекламу

Что такое TRC в автомобиле (TRaction Control)

TRC (TRaction Control) – это одно из названий антипробуксовочной системы. Так сложилось, что разные производители автомобилей называют её по-разному, в описаниях моделей авто можно встретить аббревиатуры ETS, ASC, ASR, STC и многие другие. Но вне зависимости от названия, задача этой системы сводится к предупреждению пробуксовки передней колёсной пары вашего автомобиля.

Пробуксовка, как правило, появляется при старте или попытке резко ускориться на скользком или вязком покрытии: на обледеневшей дороге, в песке или грязи: двигатель ревёт, колёса при этом прокручиваются вхолостую, а автомобиль не трогается с места или движется с прежней скоростью.

Устройство и принцип работы системы TRC (TRaction Control)

TRC (TRaction Control) – это система, которая одновременно управляет как процессами торможения, так и усиления тяги двигателя. Эта система не только исключает пробуксовку ведущей колёсной пары, но и регулирует тяговую силу двигателя – до значений, оптимальных для конкретного дорожного покрытия, по которому автомобиль движется.

Благодаря TRC водитель избавлен от сложных манипуляций с педалью газа при пробуксовке, а сам автомобиль приобретает исключительную устойчивость при резком старте с места или быстром ускорении на скользкой дороге.

Впрочем, все автопроизводители, снабжающие свои детища антипробуксовочными системами, в том числе и Toyota, устанавливающая на автомобили систему TRC (у Тойот С-класса она является опционной, а у всех классов выше – входит в базовую комплектацию авто), подчёркивают, что система антипробуксовки – это не альтернатива разумному и безопасному вождению автомобиля.

Кроме того, напоминают производители, то, насколько эффективна будет антипробуксовочная система, в том числе TRC, зависит от состояния дороги и степени износа покрышек.

В наши дни большинство антипробуксовочных систем являются электрогидравлическими. Разумеется, у разных производителей есть свои ноу-хау и системы антипробуксовки могут незначительно конструктивно отличаться друг от друга. Но все же в целом их принцип действия можно рассмотреть на примере TRC.

TRC в автомобиле управляет тягой мотора за счёт возможности управления воздушной заслонкой, задержки зажигания в цилиндрах (в одном из них или в нескольких одновременно). Также TRC (TRaction Control) может увеличивать или уменьшать подачу топлива в двигатель и управлять тормозным приводом.

По сути своей, TRC – это необходимый компонент системы безопасности автомобиля, особенно важный для машин с мощным двигателем, малейший избыток тяги которого приводит к пробуксовке ведущих колёс.

Без адекватно работающей TRC немыслим современный внедорожник, который априори обязан с честью преодолевать что скользкие и мокрые дороги, что их полное отсутствие. Не обойтись без TRC и гоночным моделям, им антипробуксовочная система позволяет выходить из поворота с ускорением без пробуксовки колёс.

Иногда можно услышать мнение, что TRC лишает опытного водителя необходимого ему контроля над автомобилем. Мало того, эта система не просто непопулярна среди поклонников автоспорта – TRC регулярно пытаются объявить вне закона в некоторых его видах, вплоть до Формулы 1, где из-за споров вокруг TRC даже пришлось несколько лет назад скорректировать правила.

Впрочем, для большинства автолюбителей TRC – это надёжный помощник. Эта система не только позволяет тронуться с места или ускориться, не буксуя на мокрой или обледенелой дороге, она также значительно облегчает прохождение переднеприводной машиной поворотов.

Известно, что на сложных поворотах в некоторых случаях наступает момент, когда передние колёса оказываются неспособны тянуть автомобиль и при этом поворачивать, не буксуя. TRC (TRaction Control) же позволяет вернуть машине управляемость.

Поделитесь информацией с друзьями:


Разновидности теплораспределительного слоя | Полезная информация

Кастрюли из нержавеющей стали давно зарекомендовали себя со сторон надежности и долговечности. Их широко применяют в быту и на предприятиях общественного питания.

В отличие от кастрюль алюминиевых, в кастрюлях из нержавейки применяют, так называемый теплораспределительный слой.

Теплораспределительный слой или сокращенно ТРС – это многослойное дно, как правило, имеющее особенность — алюминиевую прослойку внутри.

Давайте разберемся, в чем же заключаются эти особенности?

Распространённым типом дна является капсульное трехслойное. На рисунке показано устройство такого дна. Алюминиевая прослойка находиться между слоями нержавейки. Для примера можно посмотреть кастрюлю серии «Гретта» на 4,2 литра.

В данном примере алюминий выполняет функцию проводника тепла и тем самым равномерно распределяет его по всей площади нагрева. Благодаря этому продукт быстрее нагревается и снижается риск пригорания, а нержавейка, в свою очередь, антикоррозийная и имеет гладкую поверхность, которую можно с легкостью отчистить от загрязнения.

Преимущества данного дна не только в его способности распределять тепло равномерно, но и также аккумулировать его, сохраняя приготовленный продукт горячим продолжительное время после приготовления.

Так же существует подобная конструкция дна только с небольшими изменениями. В этом случае нижний слой дна выполнен не из нержавеющей стали, а из меди.

Медь обладает большей теплопроводностью, по сравнению с нержавейкой, а следовательно, еще быстрее проводит тепло. Благодаря такому решению, для нагревания продукта в кастрюле затрачивается меньше энергии и времени для предварительного разогрева. Однако, существует и отрицательная сторона использования меди – это ее стоимость. Так как она несколько дороже нержавеющей стали, то и конечное изделие, в данном случае кастрюля, имеет большую стоимость по сравнению с распространённым капсульным дном.

Очевидно, что толстое дно более привлекательно для потребителя. В настоящее время существует еще один вид ТРС – сэндвич. Такое дно имеет аж целых четыре слоя в определенной последовательности: нержавеющая сталь, алюминий, нержавеющая сталь и медь. Благодаря такому сочетанию кастрюля получает качества всех металлов сразу. Такое дно устойчиво к механическим воздействиям, превосходно уберегает пищу от пригорания, долго сохраняет тепло и сокращает время приготовления блюд.

TRS — это… Что такое TRS?

  • TRS-80 — Model I. El TRS 80 (Tandy Radio Shack Z 80), también cariñosamente o burlonamente conocido como el Trash 80 ( Basura 80 ), era la designación para varias líneas de sistemas de microcomputadores producidos por Tandy Corporation y vendidos a través …   Wikipedia Español

  • Trs-80 — Photographie d un TRS 80 Modèle I. Le TRS 80 est un micro ordinateur construit par Tandy RadioShack. Sommaire 1 Le modèle I …   Wikipédia en Français

  • TRS-80 — Modèle I Le TRS 80 est un micro ordinateur construit par Tandy RadioShack. Sommaire 1 Le modèle I …   Wikipédia en Français

  • TRS-80 — ist die Bezeichnung für verschiedene Serien von Heimcomputern des Unternehmens Tandy Corporation in den 70er und 80er Jahren. TRS steht für Tandy RadioShack. Als scherzhafte Bezeichnung kannte man die TRS 80 Reihe in der Szene als „Trash Eighty“… …   Deutsch Wikipedia

  • TRS-80 — Model I TRS 80  серия настольных микрокомпьютеров компании …   Википедия

  • TRS-80 MC-10 — TRS 80  серия настольных микрокомпьютеров компании Tandy Corporation, которые продавались через сеть магазинов RadioShack в конце 1970 х  начале 1980 х. Целевыми потребителями системы были энтузиасты, домашние пользователи и небольшие компании.… …   Википедия

  • TRS — total return swap (TRS) A total return swap or total rate of return swap is a bilateral contract where one party receives the total return on a reference asset in exchange for paying the other party a periodic cash flow, typically a floating rate …   Law dictionary

  • TRS-3D — TRS 3D/16 auf der Mastspitze der Korvette Braunschweig Das TRS 3D ist ein kohärentes Multimode Erfassungsradar zur Überwachung und Waffenzuweisung, welches für den Einsatz auf Booten und Schiffen konzipiert wurde. Das 3D Radar arbeitet im G Band… …   Deutsch Wikipedia

  • TRS — TRS: Не следует путать с TSR. Разъём TRS («джек», «пальчиковый») распространённый разъём для передачи аудиосигнала. TRS 80 серия настольных микрокомпьютеров компании Tandy Corporation TRS 80 Color Computer домашний компьютер на основе… …   Википедия

  • Trs — утилита Unix наподобие tr, но заменяющий не один символ другим, а одну последовательность символов на другую. Можно подумать, что похожее делает sed, однако это не так, различие можно понять, рассмотрев пример: $ echo 642 |trs e 4 7 72 66 64 4 42 …   Википедия

  • TRS-80 —   [Abk. für Tandy Radio Shack 80, dt. »Radiobude von Tandy mit (Z)80«], einer der ersten Mikrocomputer, der 1977 von Tandy für 1500 US $ auf den Markt gebracht wurde. Der TRS 80 hat einen Z80 Prozessor und je 4 KByte RAM und ROM, wobei im ROM… …   Universal-Lexikon

  • Трансформатор развязывающий сигнальный ТРС3-1 | «ЛЭПКОС», ИЦ «Северо-Западная Лаборатория»

     

    СПЕЦИФИКАЦИЯ

    ТрансформаторКоэффициент трансформации ± 3%L1 Гн, minL2 Гн, minL3 Гн, minL4 Гн, minRпост., Ом махСхема
    III
    ТРС3-1L1:L2=1:1>2,0>2,0L1<60,0L2<80,0рис.1
    ТРС3-1-2L1:L2=2:1>2,0L1<60,0L2<40,0рис.1
    ТРС3-1-3L1:L2=1:0,7>2,5>2,0L1<70,0L2<80,0рис.1
    ТРС3-1-4L1:L2:L3=1:1:2>0,5>1,0>2,0L1<30,0L2<80,0рис.2
    ТРС3-1-5L1:L2:L3=1:1:2>0,5>0,5>2,0L1<30,0L2<80,0рис.3
    ТРС3-1-6L1:L2:L3:L4=1:1:1:1>0,5>0,5>0,5>0,5L1<30,0L3<40,0рис.4
    ТРС3-1-7L1:L2:L3=1:0,5:0,5>2,0>0,5>0,5L1<60,0L3<40,0рис.5
    • Uпр.=450B
    • Диапазон рабочих частот 300 — 3400Гц
    • Индуктивность измеряется на частоте 1 кГц при U =1 В

    При заказе трансформаторов ТРС3-1 в исполнении для поверхностного монтажа, в его обозначение добавляется суффикс SMD: ТРС3-1-SMD

    ФЕРРИТ-ХОЛДИНГ: Новости

     

    30.12 19 

    Уважаемые коллеги и партнеры! Коллектив компании ЛЭПКОС поздравляет с наступающими Новым годом и Рождеством! Желаем уверенно идти к самым амбициозным целям, всегда держать руку на пульсе и реализовать в Новом году все самые смелые идеи. Интересных проектов, хороших новостей и финансовых успехов!




    24.12 19 

    Режим работы склада ЛЭПКОС:31.12.2019 склад ЛЭПКОС работает с 8-30 до 15-00. В период с 01.01.2020 по 13.01.2020 в связи с новогодними праздниками и переездом склада ЛЭПКОС отгрузки продукции заказчикам производиться не будут. С 14 января 2020 года отгрузки будут осуществляться с нового склада по адресу: СПб, Московское шоссе, д.101, к.3. Приносим извинения за временные неудобства!




    08.10 19 

    ООО «ЛЭПКОС» приглашает посетить стенд нашей компании на выставке ChipEXPO 2019, которая пройдет с 16 по 18 октября 2019 года в г. Москве на территории ЦВК «Экспоцентр» на Красной Пресне, павильон «Форум», стенд C23.




    26.06 19 

    По итогам 2018 года компания «ЛЭПКОС» награждена компанией TDK памятным знаком «Лучший продавец ферритов 2018».


    29.04 19 

    График работы компании «ЛЭПКОС» в период майских праздников.



     
     

    «Северо-Западная Лаборатория» © 1999—2020

    Поддержка — Кутузова Марина

    Перейти к странице:
    – Главная страница– О компании– Продукция– – Изготовление трансформаторов– – –  Трансформаторы развязывающие сигнальные– – – – ТРС1-1– – – – ТРС2-1– – – – ТРС3-1– – – Трансформатор серии ТВ-1-18 (ФУИС.671121.001)– – Ферриты и каркасы Epcos– – – Сердечники E, EF– – – – Номенклатура– – – – Таблица соответствия типоразмеров– – – – Количество в заводской упаковке– – – – Каркасы и скобы– – – Сердечники EFD– – – – Номенклатура– – – – Каркасы и скобы– – – – Количество в заводской упаковке– – – Сердечники ELP– – – – Номенклатура (без зазора)– – – – Количество в заводской упаковке– – – – Номенклатура (с зазором)– – – Сердечники ETD– – – – Номенклатура– – – – Каркасы и скобы– – – – Количество в заводской упаковке– – – Сердечники EP, EPX, EPO– – – – Номенклатура– – – – Каркасы и скобы– – – Сердечники ER– – – – Номенклатура (без зазора)– – – – Номенклатура (с зазором)– – – – Каркасы и скобы– – – – Количество в заводской упаковке– – – Сердечники RM– – – – Номенклатура (без зазора)– – – – Номенклатура (с зазором)– – – – История RM (КВ)– – – – Каркасы и скобы– – – Сердечники POT– – – – Количество в заводской упаковке– – – Сердечники PS, PCH– – – Сердечники PQ– – – – Количество в заводской упаковке– – – – Каркасы PQ– – – Сердечники PM– – – – Количество в заводской упаковке– – – Сердечники UU, UI, UR– – – Ферритовые кольца R– – – – Характеристики диэлектрического покрытия– – – – Номенклатура– – – – Основания и футляры для кольцевых сердечников– – – – Основания и футляры для кольцевых сердечников Epcos– – – Сердечники DL– – – Таблица рекомендуемых замен– – – Ферритовые материалы Epcos– – Сердечники Magnetics– – – Порошковые– – – – Кольцевые– – – – – Маркировка– – – – – Масса– – – – – Наборы для ОКР– – – – Тонкие кольцевые– – – – Сердечники конфигурации E (Kool Mµ)– – – – Сердечники U и B– – – – Мощные составные магнитопроводы– – – Ленточные сердечники– – – Сердечники Magnetics для конструирования новых конфигураций составных магнитопроводов– – – Сердечники конфигурации EQ из порошковых материалов Magnetics– – Сердечники на основе распыленного железа– – – Кольцевые– – – Конфигурации гантель– – Сердечники Magnetec– – – Характеристики NANOPERM– – – Сравнение с ферритами– – – Серия CT– – – Серия LC– – – Серия EMC– – – Сердечники COOL BLUE– – – Серия LM– – – Двухобмоточные синфазные дроссели для подавления радиопомех– – – Трехобмоточные синфазные дроссели – – Сердечники TDK и готовые импедеры USM– – – Процесс высокочастотной сварки труб– – – Ферритовые сердечники TDK– – – – Конфигурации ZR– – – – Конфигурации ZRH– – – – Конфигурации ZRS– – – – Конфигурации ZRSH– – – – Конфигурация ZRSH-SQ– – – Импедеры TF– – – Импедеры RF– – – Фиберглассовые трубы из стекловолокна– – – Сварочные обжимные ролики– – – Системы фильтрации эмульсии– – – Медные индукционные катушки– – – Твердосплавные режущие пластины и держатели– – – – Номенклатура– – – – Держатели инструмента– – – Системы для напыления– – – Циркулярные пилы и лезвия гильотин для резки труб– – – Внутренняя зачистка труб– – Сердечники для EMC– – – Серия CF– – – Конфигурация гантель– – – – Ферритовые сердечники серии DR2W– – – – Ферритовые сердечники серии AIRD– – – Серия RP– – – Серия FH– – – Серия FP– – – Пластины FAT100– – – Поглотители серии WPA– – Магнитотвёрдые магнитные материалы– – – Магниты NdFeB– – – – Кривые размагничивания NdFeBr– – – Магниты ALNICO– – – Редкоземельные магниты SmCo– – – – Кривые размагничивания SmCo– – – Бариевые и стронциевые магнитотвердые ферриты – – – Магнитотвердые ферриты TDK– – Пассивные компоненты Epcos– – – Трансформаторы и индуктивности– – – – SMT индуктивности серии SIMID– – – – – Тип B82442T– – – – – Тип B82496C– – – – – Тип B82498B– – – – – Тип B82498F– – – – – Тип B82412A– – – – – Тип B82422A*100– – – – – Тип B82422H– – – – – Тип B82422T– – – – – Тип B82432A– – – – – Тип B82432C– – – – – Тип B82432T– – – – – Тип B82442A– – – – – Тип B82442H– – – – Силовые индуктивности EPCOS AG– – – – – Индуктивности серии ERU– – – – Радиочастотные дроссели (RF chokes)– – – – Высокочастотные дроссели (VHF chokes)– – – – Дроссели EPCOS AG для линий передачи сигналов и данных– – – – Мощные силовые дроссели EPCOS AG– – – – Тококомпенсированные силовые дроссели EPCOS AG– – – – Телекоммуникационные трансформаторы EPCOS AG для линий xDSL– – – – Силовые индуктивности TDK– – – – Измерительные трансформаторы тока– – – – Дроссели TDK в схемах коррекции коэффициента мощности– – – Конденсаторы TDK-EPC– – – – Пленочные конденсаторы Epcos– – – Электролитические конденсаторы– – – – Серия B43644– – – – Серия B41231– – – – Серия B41505– – – – Серия B43305– – – – Серия B43501– – – – Серия B43504– – – – Серия B43508– – – – Серия B43541– – – – Серия B43540– – – – Серия B43544– – – – Серия B43601– – – – Серия B43640– – – – Серия B43510/B43520– – – – Серия B43515/B43525– – – – Серия B43511/B43521– – – – Серия B41605– – – – Серия B41607– – – – Серия B41689/B41789– – – – Серия B41690/B41790– – – – Серия B41691/B41791– – – – Серия B41692/B41792– – – – Серия B41693/B41793– – – – Серия B41696/B41796– – – – Серия B43693/B43793– – – – Серия B41695/B41795– – – – Серия B41554– – – – Серия B41550/B41570– – – – Серия B41560/B41580– – – – Серия B41456/B41458– – – – Серия B43464/B43484– – – – Серия B43740/B43760– – – – Серия B43750/B43770– – – – Серия B43564/B43584– – – – Серия B43456/B43458– – – – Серия B43455/B43457– – – – Серия B43700/B43720– – – – Серия B43560/43580– – – – Серия B43703/B43723– – – – Серия B43704/B43724– – – – Серия B43705/B43725– – – – Серия B43545– – – – Серия B43642– – – – Серия B41851/B43851– – – – Серия B41856– – – – Серия B41858– – – – Серия B41890– – – – Серия B43888– – – – Серия B43890– – – – Серия B41863– – – – Серия B41859– – – – Серия B41888– – – – Серия B41866– – – – Серия B41895– – – – Серия B41896– – – – Серия B43896– – – – Серия B43624– – – Варисторы Epcos– – – Катушки-антенны для RFID-меток– – – NTC термисторы Epcos– – – Чип-индуктивности TDK– – – Газонаполненные разрядники Epcos– – – Трансформаторы TDK для DC/DC преобразователей – – – Двухтактные трансформаторы (Push-Pull) серии B82805A– – – Датчики влажности TDK– – – Угловые датчики TMR (TDK)– – Ферритовые сердечники больших размеров– – – Сердечники UU– – – Сердечники UY– – – Сердечники EE– – – Сердечники EC– – – Сердечники I– – – Сердечники R– – Продукция фирмы TDK (Япония)– – – Ферритовые фильтры серии ZCAT на круглые и плоские кабели– – – Многослойные керамические конденсаторы– – – – Температурная характеристика C0G– – – – Температурная характеристика CH– – – – Температурная характеристика: X5R– – – – Температурная характеристика X7R– – – – Температурная характеристика Y5V– – – – Температурная характеристика X7S– – – Керамические конденсаторы с выводами– – – Высоковольтные керамические конденсаторы– – – Индуктивности TDK– – Трансформаторы и индуктивности– – – Синфазные дроссели– – Сердечники фирмы Ferroxcube– – – Материалы Ferroxcube– – – – Обзор по материалам производства Ferroxcube– – – – Таблица новых и старых материалов Ferroxcube, рекомендуемая замена устаревших материалов.– – – Стержневые сердечники– – – Сердечники PQ– – – – Каркасы к сердечникам PQ– – – Сегментное кольцо– – – Ферритовые сердечники UR– – – Кольцевые сердечники с зазором– – – Помехоподавляющие сердечники конфигурации CST– – – Специальные ферриты– – – – Большие ферритовые кольца для ускорителей частиц– – – – Изготовление штучных экспериментальных образцов ферритовых сердечников по документации заказчика– – – – Пластины для безэховых камер– – – Ферритовые помехоподавляющие бусины на провод– – – Кольцевые сердечники Ferroxcube на основе распыленного железа– – – Ферритовые трубки конфигурации TUB– – СВЧ ферриты Temex-Ceramics– – Конденсаторы Epcos и TDK– – элементы защиты и фильтры Epcos и TDK– – – PTC термисторы– – – Кера-диоды– – ЭМС-фильтры TDK-EPCOS– – Подстроечные конденсаторы – – Изоляционные материалы для намотки трансформаторов– – фильтры на ПАВ– – датчики давления Epcos– – Сердечники Российского производства– – – Намоточные каркасы для Ш-образных сердечников отечественного производства– – – Ферритовые сердечники конфигурации «Ч»– – – Кольцевые ферритовые сердечники– – – Сердечники конфигурации «Ш»– – – порошковые сердечники отечественного производства– – – Отечественные ферритовые материалы– – – П-образные сердечники конфигурации ПК– – Сердечники из аморфных и нанокристаллических сплавов– – –  материалы на основе аморфных и нанокристаллических сплавов– – – Характеристики аморфных и нанокристаллических сплавов серии АМАГ (МСТАТОР)– – – Тороидальные аморфные и нанокристаллические магнитопроводы Мстатор– – – – Магнитопроводы МСТАТОР серии MSP с линейной петлёй для трансформаторов и дросселей сетей isdn– – – – Магнитопроводы для аудио систем серии MSTAN– – – – Аморфные магнитопроводы с прямоугольной петлёй гистерезиса серии MSSA– – – – Помехоподавляющие магнитопроводы для многовитковых дросселей серии MSK– – – – Магнитопроводы МСТАТОР серии MSTN для силовых трансформаторов ИИП – – – – Низкопрофильные дроссельные магнитопроводы с распределённым зазором– – диэлектрические резонаторы Temex-Ceramics– – Беспроводные технологии TDK: чип-антенны, Bluetooth и WLAN модули – – Гибкие поглотители– – Trimmer capacitors Temex-Ceramics– – Конденсаторы Cera Link– Новости компании– – Неделя Московского района (20-23 октября 2015 года)– Статьи и публикации– – Наиболее часто задаваемые вопросы (FAQ)– – Магнитомягкие материалы для современной силовой электроники– – Современные магнитомягкие материалы для силовой электроники– – Сердечники катушек индуктивности — выбор материала и формы– – Epcos — компоненты защиты– – Ferrite Magnetic Design Tool 7.0– – Список патентов– – Список литературы– – Нанокристаллические материалы сердечников– – Технологические особенности магнитотвердых материалов и области их применения– – Классификация магнитомягких материалов по химическому составу– – Термины и определения параметров магнитных материалов– – Классификация магнитных материалов по магнитным свойствам– – Классификация отечественных магнитомягких ферритов– – – Ферриты общего применения– – – Термостабильные ферриты– – – Высокопроницаемые ферриты– – – Ферриты для телевизионной техники– – – Ферриты для импульсных трансформаторов– – – Ферриты для перестраиваемых контуров мощных радиотехнических устройств– – – Ферриты для широкополосных трансформаторов– – – Ферриты для магнитных головок– – – Ферриты для датчиков температуры с заданной точкой Кюри– – – Ферриты для магнитного экранирования– – Новый ферритовый материал Epcos N95– – Новые порошковые материалы Magnetics– – Высоконадежные подстроечные конденсаторы Temex-Ceramics– – Перспективы применения новой серии импульсных трансформаторов Epcos B82804A в схемах управления затвором MOSFET– – Ферритовые материалы TDK– – Особенности применения порошковых Е-образных сердечников Magnetics в сварочном оборудовании– – Исследование частотных характеристик дросселей в широком диапазоне частот– – Импульсные трансформаторы серии ALT (TDK) для LAN коннекторов– – Материал Kool Mµ® MAX– – Разработка устройств на основе порошковых сердечников Magnetics при повышенных температурах– – Синфазные дроссели TDK для схем связи Ethernet автомобильного назначения – – Меры для поддержания EMC в схемах LVDC– – Особенности применения силовых индуктивностей– Наши каталоги– Контакты– Сертификаты и дипломы– Карта сайта– Подбор аналогов EPCOS — TDK– Фильтры синфазных помех TDK– МСТАТОР

    РС-82 — Википедия

    В основном схожие с реактивными снарядами РС-82 реактивные снаряды М-8, но головная часть РС-82 насечена на прямоугольники для лучшего образования осколков. Музей космонавтики и ракетной техники; Санкт-Петербург

    РС-82 и РС-132 (от рус. реактивный снаряд, калибра соответственно 82 и 132 мм) — неуправляемые авиационные боеприпасы (достигающие цели без коррекции траектории в процессе полёта) классов воздух — воздух и воздух — поверхность, оснащённые реактивным двигателем на бездымном порохе. Разработаны в СССР в период с 1929 по 1937 г. Широко использовались во время Великой Отечественной войны. Дальнейшим развитием РС-82 и РС-132 стали снаряды M-8 и М-13, использовавшиеся также в РСЗО класса поверхность — поверхность БМ-8 и БМ-13.

    НаименованиеРС-82РС-132
    Калибр, мм82132
    Длина снаряда, мм600845
    Вес ВВ, кг0,360,9
    Вес ракетного топлива, кг1,13,8
    Полный вес снаряда, кг6,823
    Максимальная скорость снаряда (без учёта скорости носителя), м/с340350
    Максимальная дальность, км6,27,1
    Радиус сплошного осколочного поражения, м6-79-10
    Рассеивание при стрельбе по наземным целям, тысячные доли дальности14-1614-16

    Снаряд состоит из головной боевой и реактивной части (порохового реактивного двигателя). Боевая часть снаряжена зарядом взрывчатого вещества, для подрыва которого используются контактный (АМ-А) или неконтактный (АГДТ-А) взрыватели. Реактивный двигатель имеет камеру сгорания, в которой помещён метательный заряд в виде цилиндрических шашек из бездымного пороха с осевым каналом. На наружной части обоих концов камеры выполнены центрирующие утолщения с ввёрнутыми в них направляющими штифтами. Для воспламенения порохового заряда используется воспламенитель из дымного ружейного пороха. Образующиеся при горении пороховых шашек газы, истекают через сопло, перед которым расположена диафрагма (колосниковая решётка), препятствующая выбросу шашек через сопло. Стабилизация снаряда в полёте обеспечивается с помощью хвостового стабилизатора из четырёх стальных штампованных перьев. Головка снаряда тупая, с надрезами на оживальной части.

    Топливо[править | править код]

    Весной 1921 году в Москве, начала свою деятельность «Лаборатория для разработки изобретений Н. И. Тихомирова» в которую вскоре был направлен инженер и изобретатель В. А. Артемьев. Целью лаборатории стала разработка твердотопливных ракет. В первую очередь лабораторией была проверена возможность использования штатных артиллерийских пироксилиновых бездымных порохов на летучем спиртоэфирном растворителе для изготовления ракетных зарядов. Опыты показали невозможность применения их для этой цели, поэтому О. Г. Филипповым и С. А. Сериковым был разработан принципиально новый пироксилино-тротиловый порох (ПТП) содержавший 76,5 % пироксилина, 23 % тротила и 0,5 % централита. Несмотря на серьёзные недостатки технологического процесса получения шашек из ПТП, именно на этом порохе в течение 10 лет велась работа по созданию зарядов к ракетным двигателям различного назначения, в том числе для авиационных реактивных снарядов.

    Выбор калибра[править | править код]

    Первоначально для авиационного реактивного снаряда был установлен стандартный калибр 76 мм, но, полученные в процессе производства пороховые шашки имели диаметр 24 мм. Таким образом, снаряд выбранного калибра не мог быть снаряжён пакетом из семи шашек. Перенастройка производства означала бы задержку в испытаниях, поэтому калибр снаряда был увеличен. С учётом толщины стенок ракетной камеры и местных её утолщений, был определен калибр авиационного реактивного снаряда, равный 82 мм, а сам снаряд стал называться PC-82. Для ускорения работ по созданию РС большего калибра было решено использовать имеющиеся в наличии пороховые шашки диаметром 24 мм. Пакет из 19 таких шашек требовал ракетной камеры с внутренним диаметром 122 мм, что с учётом толщины стенки ракетной камеры и местных её утолщений определило калибр реактивного снаряда — 132 мм. В дальнейшем РС-132 снаряжались пакетом из шашек диаметром 40 мм.
    По баллистическому расчёту необходимая масса заряда для 82-мм PC могла быть получена при длине заряда 230 мм. Прессование шашек с центральным каналом такой длины по технологии глухого прессования пироксилино-тротиловой массы оказалось невозможным. Пришлось длину каждой шашки уменьшить в 4 раза и заряд составлялся из 28 пороховых шашек длиной 57,5 мм, вместо 7, запланированных по исходному проекту. Для РС-132 приходилось использовать 35 шашек диаметром 40 мм.

    Выбор способа стабилизации[править | править код]

    Первый в СССР успешный полёт ракеты (РС-82) на бездымном порохе состоялся весной 1928 г. в Ленинграде, куда лаборатория Тихомирова перебазировалась в 1927 г. В июле 1928 года она была переименована в Газодинамическую лабораторию (ГДЛ) ВНИК при РВС СССР.
    На протяжении первых лет разработка снарядов шла по пути совмещения активного и реактивного принципов движения — стабилизированные оперением ракеты запускались из миномётов — что давало бо́льшую дальность полёта. В конце 20-х годов по результатам проведённых испытаний был сделан вывод, что применение активно-реактивных снарядов незначительно увеличивает дальность, в то же время существенно увеличивает вес пусковой установки, лишая ракетное оружие таких важных преимуществ как манёвренность и простота действия. Начиная с 1930 г. ГДЛ приступила к разработке снарядов, основанных на применении только реактивного принципа движения.
    Первоначально для РС был выбран вариант стабилизации вращением в полёте (Гироскопический). При этом 20-30 % энергии заряда тратилось на сообщение ракетам вращательного движения, что заметно уменьшало дальность полёта, кучность же оставалась неудовлетворительной, что труднообъяснимо. Поэтому было решено вернуться к снарядам с оперением. Опытным путём были установлены оптимальные размеры оперения — 200 мм для РС-82 и 300 мм для РС-132. При дальности полёта в 5-6 км эти снаряды демонстрировали вполне удовлетворительную кучность. Созданный в 1942 году инженерами предприятия «Чешска зброевка» на основе РС-82 собственный реактивный снаряд имел гибридную систему стабилизации: поверхности стабилизаторов имели малую (1,5 градуса) закрутку. Вращение снаряда вокруг своей оси было медленным и недостаточным для стабилизации вращением, но таким образом устранялся дестабилизирующий эффект неравномерного горения порохового заряда (эксцентриситет тяги). Германская ракета превосходила РС-82 по дальности полёта, кучности и действию по цели[1]. Собственные ракеты с косо поставленным оперением появились в РККА только в 1944 году, получив специальные баллистические индексы ТС-46 и ТС-47

    Принятие на вооружение[править | править код]

    В 1933 году в Москве был создан Реактивный научно-исследовательский институт (РНИИ), объединивший Ленинградскую ГДЛ и московскую Группу изучения реактивного движения (ГИРД). Начальником РНИИ назначили И. Т. Клеймёнова (бывшего директора Газодинамической лаборатории), а его заместителем — С. П. Королёва (бывшего начальника МосГИРД). В 1937 году РНИИ получило наименование НИИ-3 Наркомата оборонной промышленности.
    В середине 30-х годов возникла проблема, связанная с трудностью получения достаточного количества топлива для РС — применявшиеся методы получения шашек из ПТП не отвечали требованиям массового промышленного производства. В качестве нового ракетного топлива был выбран разработанный коллективом учёных под руководством А. С. Бакаева баллиститный нитроглицериновый порох Н содержавший коллоксилина — 57 %, нитроглицерина — 28 %, динитротолуола — 11 %, централита — 3 %, вазелина — 1 %. Его производство уже было налажено на одном из заводов на юге Украины. Технология изготовления баллиститных порохов не ограничивала длину шашек, поэтому после предварительных испытаний перешли к изготовлению зарядов из шашек, длина которых была примерно равна длине ракетных камер — 230 мм для РС-82 и 287,5 мм для PC-132.
    В начале 1937 г. полигонные испытания авиационных снарядов РС-82 с зарядами из баллиститного пороха Н, были повторены в большом объёме с использованием самолётов различных типов. После необходимых доработок, в декабре 1937 г. 82-мм реактивные снаряды были приняты на вооружение ВВС СССР. В июле 1938 г. после успешных войсковых испытаний были приняты на вооружение бомбардировочной и штурмовой авиации реактивные снаряды PC-132.
    В 1940 г. заводы Наркомата боеприпасов выпустили 125,1 тыс. ракет РС-82 и 31,68 тыс. ракет РС-132.

    МодельХарактеристики
    РС-82 (с 1942 М-8)Базовая модификация 82-мм реактивного снаряда, принята на вооружение в 1937 г.
    РБС-82Бронебойный вариант, принят на вооружение в 1942 г. Бронепробиваемость до 50 мм по нормали. Состояли на вооружении Ил-2.
    РОС-82Реактивный осколочный снаряд.
    РОФС-82Вариант с осколочно-фугасной БЧ.
    ЗС-82Зажигательный РС.
    ТРС-82Турбореактивный снаряд, разработан в 1943 г.
    РС-132 (с 1942 М-13)Базовая модификация 132-мм реактивного снаряда, принята на вооружение в 1938 г.
    РБС-132Бронебойный вариант, принят на вооружение в 1942 г. Бронепробиваемость до 75 мм по нормали. Состояли на вооружении Ил-2.
    РОФС-132Вариант с осколочно-фугасной БЧ.
    РОС-132Реактивный осколочный снаряд.
    ЗС-132Зажигательный РС.
    ТРС-132Турбореактивный снаряд, разработан в 1943 г.

    В 1935 г. в процессе испытаний РС-82 на истребителе И-15 применялись авиационные пусковые устройства бугельного типа, которые имели большое лобовое сопротивление и заметно снижали скорость самолёта. В 1937 г. в РНИИ была разработана направляющая желобкового типа с одной планкой, имеющей Т-образный паз для направляющих штифтов снаряда. Для повышения прочности направляющую прикрепляли к силовой балке, выполненной из трубы. Эта конструкция реактивного орудия (РО) получила название «флейта». Позднее в пусковых устройствах для РС-132 от опорной балки-трубы отказались и заменили её П-образным профилем. Для пуска ракет РО оснащались пиропистолетами конструкций Павленко и Клейнина.
    Применение пусковых установок желобкового типа значительно улучшило аэродинамические и эксплуатационные характеристики снарядов, упростило их изготовление, обеспечило высокую надёжность схода снарядов. Для снарядов РС-82 и РБС-82 (бронебойные) применялись пусковые установки длиной 1007 мм. Длина направляющих их составляла 835 мм, число направляющих — 8. Вес всей ракетной системы 23 кг. Для снарядов РС-132 и РБС-132 применялись пусковые установки длиной 1434 мм. Длина их направляющих составляла 130 мм, число направляющих — 10. Вес всей ракетной системы 63 кг. На самолётах Ил-2 для снарядов РС-132 и РБС-132 применялись пусковые установки длиной 1434 мм. Длина их направляющих составляла 130 мм. Число направляющих — 8. Вес всей ракетной системы 50 кг. В годы Великой Отечественной войны в войсках, изготавливалось значительное число полукустарных пусковых установок для 82-мм и 132-мм реактивных снарядов.
    Для стрельбы по воздушным целям использовали снаряды РОС-82, снаряжённые дистанционными трубками АГДТ-А. Время их срабатывания, плавно регулировавшееся в пределах от 2 до 22 секунд, выставлялось вручную техниками по вооружению на каждом снаряде перед вылетом и докладывалось лётчику.
    За неимением достаточно точных дальномеров, дистанцию до цели пилоты определяли либо на глаз по типу самолёта, либо по дальномерной сетке стрелкового прицела. Сопоставляя дистанцию со временем установки трубки, пилот определял момент начала открытия огня ракетными снарядами. Учитывая низкую точность стрельбы одиночными PC, для создания максимальной зоны поражения осколками лётчики выпускали серией или залпом весь ракетный боезапас. Рубежами открытия огня для PC были 800—1200 м. Управление стрельбой РС — от электросбрасывателя бомб ЭСБР-3.
    Также были изготовлены и использовались для прикрытия аэродромов наземные зенитные пусковые установки залпового огня на шасси автомобиля ЗИС-5: четыре 24-зарядные для снарядов РС-82 и две 12-зарядные для снарядов РС-132 с дистанционными трубками.[2]

    Первое боевое применение нового ракетного оружия состоялось в 1939 г. на реке Халхин-Гол, где с 20 по 31 августа успешно действовало первое в истории авиации звено истребителей-ракетоносцев. В его состав входило 5 истребителей И-16, вооружённых реактивными снарядами РС-82. 20 августа 1939 г. в 16 часов советские лётчики И. Михайленко, С. Пименов, В. Федосов и Т. Ткаченко под командованием капитана Н. Звонарева вылетели на выполнение боевого задания по прикрытию советских войск. Над линией фронта они встретились с японскими истребителями. По сигналу командира все пятеро произвели одновременный ракетный залп с расстояния около километра и сбили два японских самолёта.

    В ходе советско-финской войны (1939—1940 гг.) 6 двухмоторных бомбардировщиков СБ были оснащены пусковыми установками для ракет РС-132. Пуски ракет РС-132 производились по наземным целям.

    Недостатки ракетного вооружения того периода (малая кучность и невысокая скорость снаряда) не позволяли использовать его в манёвренном воздушном бою. Наибольшая эффективность достигалась при залповом пуске осколочных РС-82 с дистанционным взрывателем по воздушным целям, идущим в плотном сомкнутом строю. Немаловажное значение имел фактор внезапности. Так, во время ВОВ был зафиксирован следующий случай — при сближении встречными курсам пары самолётов МиГ-3 с группой из 6 «мессершмитов», ведомый грамотно применил новое оружие — одновременным залпом из шести РС-82 были сбиты сразу четыре немецких самолёта. Оставшиеся два самолёта противника от вступления в бой уклонились. Применение снарядов со взрывателем мгновенного действия по воздушным целям носило нештатный характер, вроде встречи временно дооборудованных для штурмовки истребителей с тяжёлыми бомбардировщиками противника.

    РС-82 также применялись в качестве оборонительного оружия на бомбардировщиках — РО разворачивалось для стрельбы назад, при этом трубки взрывателей могли устанавливаться на различную дистанцию. Разрывы ракет препятствовали атакам истребителей из задней полусферы, а если лётчиком была точно определена дистанция до самолёта, то противник мог быть сбит.[3]

    Для борьбы с танками в 1942 г. в РНИИ были разработаны авиационные реактивные бронебойные снаряды РБС-82 и РБС-132. Кроме того, РБС-82 имел более мощный двигатель, его вес увеличился до 15 кг. Бронепробиваемость снаряда РБС-82 составила до 50 мм по нормали, а РБC-132 — до 75 мм. Снарядами РБС-82 и РБС-132 вооружали штурмовики Ил-2.

    Опыт боевых действий показал, что применение реактивных снарядов по бронированным целям имело малую эффективность, так как требовало прямого попадания. В ходе испытаний на Научно-исследовательском полигоне авиационного вооружения ВВС Красной Армии (НИП АВ ВВС КА) средний процент попаданий снарядов РС-82 в неподвижный танк при стрельбе с дистанции 400—500 м составил 1,1 %, а в плотную колонну танков — 3,7 %. Процент попадания РС-132 был ещё меньше. В условиях боевого применения с расстояния 600—700 м, при активном противодействии противника рассеивание было значительно выше.

    Против живой силы и автомобилей противника, находившихся вне укрытий, реактивные снаряды действовали достаточно успешно. Главными целями РОФС-132 таким образом были крупные площадные цели — мотомеханизированные колонны, ж/д составы, склады, батареи полевой и зенитной артиллерии

    • Беляев Т. Ф. Из истории авиации и космонавтики, Вып 61.
    • Волков Е. Б., Мазинг Г. Ю., Сокольский В. Н. Твердотопливные ракеты: История. Теория. Конструкция. — М.: Машиностроение, 1992. — 288 с. — ISBN 5-217-01748-1.
    • Широкорад А. Б. Глава 2. Первые советские 82-мм и 132-мм неуправляемые реактивные снаряды // Отечественные миномёты и реактивная артиллерия. — Мн., М.: Харвест, АСТ, 2000. — 464 с. — (Профессионал). — 7000 экз. — ISBN 985-13-0039-X, 5-17-001748-0.
    • Глушко В. П. Роль газодинамической лаборатории в развитии ракетной техники.
    • Пономаренко А. Наши славные «ЭРЭСы» // Моделист-Конструктор. — 1977. — № 7. — С. 29-30.

    что это такое, как работает и зачем нужно

    Аббревиатура TCS расшифровывается как Traction control system и обозначает систему контроля тяги или антипробуксовочную систему. Данная система имеет более чем 100-летнюю историю, на протяжении которой она в упрощенном виде сначала использовалась не только на автомобилях, но и на паровозах и электровозах.

    Глубокий интерес автопроизводителей к TCS-системе появился только во второй половине 60-х годов ХХ ст., что обусловлено приходом в автопром электронных технологий. Мнения по использованию Traction Control System не однозначны, но, несмотря на это, технология прижилась и уже около 20 лет активно используется всеми ведущими автоконцернами. Итак, что такое TCS в автомобиле, зачем нужна эта система и почему получила такое широкое применение?

    Зачем нужна система TCS

    Электрогидравлическая противобуксовочная система TCS входит в число систем активной безопасности автомобиля и отвечает за предотвращение пробуксовки ведущих колес на влажных и иных покрытиях со сниженной сцеплением. Её задача состоит в стабилизации, выравнивании курса и улучшении сцепления с дорожным полотном в автоматическом режиме на всех дорогах независимо от скорости.

    Срыв колес в скольжение происходит не только на мокром и обмерзшем асфальте, но и при резком торможении, старте с места, динамичном разгоне, прохождении поворотов, езде по участкам дорог с разными сцепными характеристиками. В любом из этих случаев система контроля тяги соответственно отреагирует и предупредит возникновение аварийной ситуации.

    Об эффективности Traction control system говорит тот факт, что после её апробации на скоростных болидах «Феррари» она была принята на вооружение командами Формулы-1 и сейчас очень широко используется в автоспорте.

    Как работает система TCS

    TCS не является принципиально новым и независимым введением, а лишь дополняет и расширяет возможности небезызвестной ABS – антиблокировочной системы, предотвращающей блокировку колес во время торможения. Противобуксовочная система успешно использует те же элементы, которые есть в распоряжении ABS: датчики на ступицах колес и блок управления системой. Главная её задача – не допустить потери сцепления ведущих колес с дорогой при поддержке гидравлики и электроники, контролирующих систему торможения и двигатель.

    Процесс работы системы TCS выглядит следующим образом:

    • Блок управления постоянно анализирует скорость вращения и степень ускорения ведущих и ведомых колес и сравнивает их. Резкое ускорение одного из ведущих колес расценивается системным процессором как потеря сцепления. В ответ он воздействует на механизм торможения этого колеса и выполняет его принудительное притормаживание в автоматическом режиме, что водитель только констатирует.
    • Помимо этого TCS оказывает влияние и на двигатель. После поступления сигнала об изменении скорости вращения колес от датчиков в блок управления ABS, он посылает данные на ЭБУ, который отдает команды другим системам, вынуждающим двигатель уменьшать тяговое усилие. Мощность двигателя снижается за счет задержки зажигания, прекращения искрообразования или уменьшения подачи топлива в каком-то цилиндре, а кроме этого может прикрываться дроссельная заслонка.
    • Новейшие противобуксовочные системы способны также влиять на работу дифференциала трансмиссии.

    Возможности систем TCS определяются сложностью их устройства, исходя из чего они вносят коррективы в работу лишь одной из систем автомобиля или нескольких. При многостороннем участии система антипробуксовки может использовать разные механизмы влияния на дорожную ситуацию, включая для этого наиболее подходящую в данных условиях систему.

    Читайте также: Что такое ESP и как оно работает.

    Мнения и факты о TCS

    Хотя многие опытные водители отмечают, что антипробуксовочный механизм несколько снижает производительность авто, для малоопытного автолюбителя Traction control system – незаменимый помощник, особенно когда контроль над дорожной ситуацией, например во время плохой погоды, теряется.

    При желании TCS отключается специальной кнопкой, но перед этим стоит еще раз вспомнить список тех преимуществ, которые при отключении становятся недоступными:

    • упрощение старта и хорошая общая управляемость;
    • высокая безопасность при прохождении поворотов;
    • предотвращение заносов;
    • снижение рисков при движении по льду снегу и мокрому асфальту;
    • замедление износа резины.

    Использование антипробуксовочной системы несет и некоторую экономическую выгоду, поскольку на 3-5% снижает расход топлива и увеличивает ресурс двигателя. 

    Читайте также: Система ASR в автомобиле — устройство и принцип работы.

    Похожие статьи

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *