Вес тела определение и формула – Вес тела в физике ℹ️ определение, формула, в чем измеряется, чем отличается от массы, от чего зависит и из-за чего возникает сила веса

Вес — Википедия

Вес — сила, с которой тело действует на опору (или подвес, или другой вид крепления), препятствующую падению, возникающая в поле сил тяжести[1][2]. Единица измерения веса в Международной системе единиц (СИ) — ньютон, иногда используется единица СГС — дина.

Вес P{\displaystyle \mathbf {P} } тела, покоящегося в инерциальной системе отсчёта, равен силе тяжести, действующей на тело, и пропорционален массе m{\displaystyle m} и ускорению свободного падения g{\displaystyle \mathbf {g} } в данной точке:

P=mg.{\displaystyle \mathbf {P} =m\mathbf {g} .}
{\displaystyle \mathbf {P} =m\mathbf {g} .} Широтное уменьшение силы тяжести mg

Ускорение свободного падения зависит от высоты над земной поверхностью и — ввиду несферичности Земли, а также ввиду её вращения — от географических координат точки измерения. В результате суточного вращения Земли существует широтное уменьшение веса: на экваторе вес примерно на 0,3 % меньше, чем на полюсах. Другим фактором, влияющим на значение g{\displaystyle \mathbf {g} } и, соответственно, вес тела, являются гравитационные аномалии, обусловленные особенностями строения земной поверхности и недр в окрестностях точки измерения. Если тело находится вблизи другой планеты, а не Земли, то ускорение свободного падения будет определяться массой и размерами этой планеты, наряду с расстоянием между её поверхностью и телом.

При движении системы «тело» — «опора или подвес» относительно инерциальной системы отсчёта с ускорением w{\displaystyle \mathbf {w} } вес перестаёт совпадать с силой тяжести:

P=m(g−w).{\displaystyle \mathbf {P} =m(\mathbf {g} -\mathbf {w} ).}

Например, если ускорение (независимо от скорости) лифта направлено вверх, то вес находящегося в нём груза увеличивается, а если вниз, то уменьшается. Ускорение за счёт вращения Земли не входит в w{\displaystyle \mathbf {w} }, оно уже учтено в g{\displaystyle \mathbf {g} }. Состояние отсутствия веса (невесомость) наступает вдали от притягивающего объекта, либо когда тело находится в свободном падении, то есть при g−w=0{\displaystyle \mathbf {g} -\mathbf {w} =0}.

Тело массой m{\displaystyle m}, вес которого анализируется, может стать субъектом приложения дополнительных сил, косвенно обусловленных присутствием гравитационного поля, в том числе силы Архимеда и трения. При этом воздействие изучаемого тела на опоры и подвесы будет опосредовано наличием указанных привходящих факторов.[прояснить]

В официальном определении, приведённом в преамбуле, отсутствует конкретизация, должны ли учитываться подобные факторы. Не оговорено также, обязательно ли роль опоры-подвеса должно играть упругое твёрдое тело и что если опор несколько. Кроме того, в публикациях встречаются и неэквивалентные дефиниции веса[3]

[4][5]. Отсюда, несмотря на ясность природы фигурирующих сил, возникают терминологические неопределённости.[источник не указан 642 дня]

Так, при учёте только вклада силы тяжести покоящемуся на наклонной поверхности телу приписывается направленный по нормали к опоре вес mgcos⁡α{\displaystyle mg\cos \alpha }, где α{\displaystyle \alpha } — угол наклона[4]. Но если учесть ещё и силу трения покоя (а она, по третьему закону Ньютона, приложена и к телу, и к опоре), то вектор веса станет равным mg{\displaystyle m\mathbf {g} }[3]. Аналогично с силой Архимеда: в жидкости или газе с плотностью ρ{\displaystyle \rho } на тело действует подъёмная сила FA=−ρgV{\displaystyle \mathbf {F} _{A}=-\rho \mathbf {g} V} (где V{\displaystyle V} — объём тела), из-за которой, скажем, воздействие тела на неровное

[6] дно водоёма ослабляется. Трактуя эту ситуацию, можно либо заявить, что вес тела снижается на вес вытесненного объёма воды, либо считать, что вес по-прежнему составляет mg{\displaystyle m\mathbf {g} } и есть ещё подлежащая отдельному анализу архимедова сила.[источник не указан 642 дня]В целом, в литературе доминирует подход[1][7][нет в источнике], при котором вес тела в покое вблизи Земли всегда приравнивается mg{\displaystyle m\mathbf {g} }. Этот подход означает, что вес тела с точностью до знака равен векторной сумме всех сил (кроме силы тяжести), действующих на тело, включая силы Архимеда («жидкая опора»
[3]
) и трения, при учёте всех имеющихся опор-подвесов совместно.

Для многих задач описанные неопределённости несущественны, так как чаще всего рассматривается неподвижное тело на сухой горизонтальной поверхности.[источник не указан 642 дня]

Понятие «вес» в физике не является необходимым[8]. В принципе, можно вообще отменить этот термин и говорить либо о «массе», либо о «силе»[9] такой-то природы. Использование понятия «вес» во многом связано просто с привычкой[8] и языковыми традициями.

Очевидно более содержательной величиной является суммарная

сила воздействия на опору, в нерусскоязычных изданиях иногда именуемая «кажущимся весом» (англ. apparent weight, фр. poids apparent). Знание этой величины, например, может помочь оценить способность конструкции удержать изучаемое тело в данных условиях. В ряде случаев — скажем, в ситуации привязанного на улице шарика, наполненного гелием, — кажущийся вес может оказаться направленным против вектора g{\displaystyle \mathbf {g} } ввиду влияния FA{\displaystyle \mathbf {F} _{A}}.

Вес можно измерять с помощью пружинных весов, которые могут служить и для косвенного измерения массы, если их соответствующим образом проградуировать; рычажные весы в такой градуировке не нуждаются, так как в этом случае сравниваются массы, на которые действует одинаковое ускорение свободного падения или сумма ускорений в неинерциальных системах отсчёта. При взвешивании с помощью технических пружинных весов вариациями ускорения свободного падения обычно пренебрегают, так как влияние этих вариаций обычно меньше практически необходимой точности взвешивания.

На результате измерений может в некоторой степени сказаться сила Архимеда, если при взвешивании с помощью рычажных весов сравниваются тела с различной плотностью.

В физике вес и масса — разные понятия. Вес — векторная величина, сила, с которой тело действует на горизонтальную опору или вертикальный подвес. Масса — скалярная величина, мера инертности тела (инертная масса) либо заряд гравитационного поля (гравитационная масса). У этих величин отличаются и единицы измерения (в системе СИ масса измеряется в килограммах, а вес — в ньютонах). Возможны ситуации с нулевым весом и ненулевой массой одного и того же тела, например, в условиях невесомости у всех тел вес равен нулю, а масса у каждого тела своя. И если в состоянии покоя тела показания весов будут нулевыми, то при ударе по весам тел с одинаковыми скоростями воздействие будет разным (см. закон сохранения импульса, закон сохранения энергии).

Вместе с тем строгое различение понятий веса и массы принято в основном в науке и технике, а во многих повседневных ситуациях слово «вес» продолжает использоваться, когда фактически речь идёт о «массе». Например, мы говорим, что какой-то объект «весит один килограмм», несмотря на то, что килограмм представляет собой единицу массы

[10]. Кроме того, термин «вес» в значении «масса» традиционно использовался в цикле наук о человеке — в словосочетании «вес тела человека», вместо современного «масса тела человека»[11]. В связи с этим метрологические организации отмечают, что неправильное использование термина «вес» вместо термина «масса» должно прекращаться и во всех тех случаях, когда имеется в виду масса, должен использоваться термин «масса»[12][13].

III Генеральная конференция по мерам и весам, проведённая в 1901 году, подчеркнула, что термин «вес» обозначает величину той же природы, что термин «сила». Конференция определила вес тела как произведение массы тела на ускорение, обусловленное гравитационным притяжением.

Стандартный вес тела конференцией был определён как произведение массы тела на стандартное ускорение, обусловленное гравитационным притяжением. В свою очередь для стандартного ускорения было принято значение 980,665 см/с2[14].

  1. 1 2 Рудой Ю. Г. Вес // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 262. — 707 с. — 100 000 экз.
  2. Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2005. — Т. I. Механика. — С. 373. — 560 с. — ISBN 5-9221-0225-7.
  3. 1 2 3 И. Е. Каган «Вес тела» (IX класс) // Фізiка: праблемы выкладання. – 2001. – № 3. – С. 58-74.
  4. 1 2 С. В. Задорожная «Вес тела» // Сайт педаг. сообщ. «Урок.рф» (2016).
  5. ↑ Во многих иноязычных публикациях вес (см., например, начало немецкой версии статьи) синонимизируется с силой тяжести, что в российской педагогике считается ошибкой.
  6. ↑ Неровность нужна для подтекания воды под опору, см. Л. Г. Асламазов: Гидростатика // Квант. – 1972. – № 12. (с. 57, рис. 9ав).
  7. Allen L. King. Weight and weightlessness (англ.) // American Journal of Physics (англ.)русск. : journal. — 1963. — Vol. 30. — P. 387. — DOI:10.1119/1.1942032. — Bibcode: 1962AmJPh..30..387K.
  8. 1 2 В. Г. Зубов. Механика. М.: Наука, 1978. — 352 с. // см. § 71, с. 176: «В механике понятие веса является совершенно лишним. Но так как это слово простое, привычное, то им часто пользуются».
  9. ↑ The National Standard of Canada, CAN/CSA-Z234.1-89 Canadian Metric Practice Guide, January 1989: 5.7.3. Considerable confusion exists in the use of the term «weight». <…> In scientific and technical work, the term «weight» should be replaced by the term «mass» or «force», depending on the application.
  10. ↑ Ранее в технике широко использовалась единица силы килограмм-сила — одна из основных единиц системы МКГСС.
  11. ↑ Медицинская энциклопедия на Академике.
  12. ↑ ISO 80000-4:2006, Quantities and units — Part 4: Mechanics.
  13. ↑ SI Units: Mass (англ.). Weights and Measures. NIST. Дата обращения 7 декабря 2016.
  14. ↑ Declaration on the unit of mass and on the definition of weight; conventional value of g (англ.). Resolution of the 3rd CGPM (1901). BIPM. Дата обращения 1 ноября 2015.
Видеоурок: вес тела

Вес тела в физике: формула, масса, сила тяжести

 

В жизни мы очень часто говорим: «вес 5 килограмм», «весит 200 грамм» и так далее. И при этом не знаем, что допускаем ошибку, говоря так. Понятие веса тела изучают все в курсе физики в седьмом классе, однако ошибочное использование некоторых определений смешалось у нас настолько, что мы забываем изученное и считаем, что вес тела и масса это одно и то же.

Однако это не так. Более того, масса тела величина неизменная, а вот вес тела может меняться, уменьшаясь вплоть до нуля. Так в чем же ошибка и как говорить правильно? Попытаемся разобраться.

Вес тела и масса тела: формула подсчета

Масса это мера инертности тела, это то, каким образом тело реагирует на приложенное к нему воздействие, либо же само воздействует на другие тела. А вес тела это сила, с которой тело действует на горизонтальную опору или вертикальный подвес под влиянием притяжения Земли.

Масса измеряется в килограммах, а вес тела, как и любая другая сила в ньютонах. Вес тела имеет направление, как и любая сила, и является величиной векторной. А масса не имеет никакого направления и является величиной скалярной.

Стрелочка, которой обозначается вес тела на рисунках и графиках, всегда направлена вниз, так же, как и сила тяжести.

Формула веса тела в физике записывается следующим образом:

P=mg

где m — масса тела

g — ускорение свободного падения = 9,81 м/с^2

Но, несмотря на совпадение с формулой и направлением силы тяжести, есть серьезное различие между силой тяжести и весом тела. Сила тяжести приложена к телу, то есть, грубо говоря, это она давит на тело, а вес тела приложен к опоре или подвесу, то есть, здесь уже тело давит на подвес или опору.

Но природа существования силы тяжести и веса тела одинакова притяжение Земли. Собственно говоря, вес тела является следствием приложенной к телу силы тяжести. И, так же как и сила тяжести, вес тела уменьшается с увеличением высоты.

Вес тела в невесомости

В состоянии невесомости вес тела равен нулю. Тело не будет давить на опору или растягивать подвес и весить ничего не будет. Однако, будет по-прежнему обладать массой, так как, чтобы придать телу какую-либо скорость, надо будет приложить определенное усилие, тем большее, чем больше масса тела.

В условиях же другой планеты масса также останется неизменной, а вес тела увеличится или уменьшится, в зависимости от силы притяжения планеты. Массу тела мы измеряем весами, в килограммах, а чтобы измерить вес тела, который измеряется в ньютонах, можно применить динамометр специальное устройство для измерения силы.

Конечно, в быту не принципиально, если мы смешиваем понятия веса и массы. Но знать разницу все же необходимо для того, чтобы считать себя образованным человеком.

Нужна помощь в учебе?



Предыдущая тема: Сила упругости: закон Гука.
Следующая тема:&nbsp&nbsp&nbspЕдиницы силы: Ньютон

Все неприличные комментарии будут удаляться.

Формула массы тела в физике

Определение и формула массы тела

Определение

В механике Ньютона массой тела называют скалярную физическую величину, которая является мерой инерционных его свойств и источником гравитационного взаимодействия. В классической физике масса всегда является положительной величиной.

Масса – аддитивная величина, что означает: масса каждой совокупности материальных точек (m) равна сумме масс всех отдельных частей системы (mi):

В классической механике считают:

  • масса тела не является зависимой от движения тела, от воздействия других тел, расположения тела;
  • выполняется закон сохранения массы: масса замкнутой механической системы тел неизменна во времени.

Инертная масса

Свойство инертности материальной точки состоит в том, что если на точку действует внешняя сила, то у нее возникает конечное по модулю ускорение. Если внешних воздействий нет, то в инерциальной системе отсчета тело находится в состоянии покоя или движется равномерно и прямолинейно. Масса входит во второй закон Ньютона:

где масса определяет инертные свойства материальной точки (инертная масса).

Гравитационная масса

Масса материальной точки входит в закон всемирного тяготения, при этом она определяет гравитационные свойства данной точки.при этом она носит название гравитационной (тяжелой) массы.

Эмпирически получено, что для всех тел отношения инертных масс к гравитационным являются одинаковыми. Следовательно, если правильно избрать величину постоянной гравитации, то можно получить, что для всякого тела инертная и гравитационная массы одинаковы и связываются с силой тяжести (Ft) избранного тела:

где g – ускорение свободного падения. Если проводить наблюдения в одной и той же точке, то ускорения свободного падения одинаковы.

Формула расчета массы через плотность тела

Масса тела может быть рассчитана как:

где – плотность вещества тела, где интегрирование проводится по объему тела. Если тел

Формула веса

В обиходе и повседневной жизни понятия «масса» и «вес» абсолютно идентичны, хотя семантическое их значение принципиально разное. Спрашивая «Какой у тебя вес?» мы подразумеваем «Сколько в тебе килограммов?». Однако на вопрос, с помощью которого мы пытаемся выяснить этот факт, ответ дается не в килограммах, а в ньютонах. Придется вернуться к школьному курсе физики.

Вес тела — величина, характеризующая силу, с которой тело оказывает давление на опору или подвес.

Для сравнения, масса тела ранее грубо определялась как «количество вещества», современное определение звучит таким образом:

Масса — физическая величина, отражающая способность тела к инерции и являющаяся мерой его гравитационных свойств.

Понятие массы вообще несколько шире представленного здесь, однако наша задача состоит несколько в другом. Вполне достаточно уяснить факт действительного различия между массой и весом.

Кроме того, единица измерения массы — килограммы, а веса (как вида силы) — ньютоны.

И, пожалуй, самое главное отличие веса от массы содержит в себе сама формула веса, которая выглядит следующим образом:

P=mg

где P — собственно вес тела (в Ньютонах), m — его масса в килограммах, а g — ускорение свободного падения, которое принято выражать в виде 9,8 Н/кг .

Иными словами, формула веса может быть понята на таком примере:

Гиря массой 1 кг подвешена к неподвижному динамометру, с тем, чтобы определить ее вес. Поскольку тело, да и сам динамометр, находятся в покое, то смело можно умножать его массу на ускорение свободного падения. Имеем: 1 (кг) х 9,8 (Н/кг)= 9,8 Н. Именно с такой силой действует гиря на подвес динамометра. Отсюда ясно, что вес тела равняется силе тяжести. Однако это не всегда так.

Самое время сделать важное замечание. Формула веса равняется силе формуле тяжести лишь в случаях, когда:

  • тело находится в состояние покоя;
  • на тело не действует сила Архимеда (выталкивающая сила). Любопытный факт, касающийся выталкивающей силы: известно, что тело, погруженное в воду, вытесняет объем воды, равный своем весу. Но оно не просто выталкивает воду, тело становится «легче» на объем вытесненной воды. Вот почему поднять в воде девушку массой 60 кг можно шутя и смеясь, а на поверхности это сделать куда сложнее.

При неравномерном движении тела, т.е. когда тело совместно с подвесом движутся с ускорением a,меняет свой облик и формула веса. Физика явления меняется незначительно, но в формуле такие изменения находят следующее отражение :

P=m (g-a).

Как можно заменить по формуле, вес может быть отрицательным, но для этого ускорение, с которым движется тело, должно быть больше ускорения свободного падения. И тут опять важно отличать вес от массы: отрицательный вес не влияет на массу (свойства тела остаются те же), однако он фактически становится направлен в противоположную сторону.

Хорош пример с ускоренным лифтом: при его резком ускорении на непродолжительное время создается впечатление»притягивания к потолку». С таким ощущением, конечно, столкнуться достаточно просто. Гораздо сложнее прочувствовать состояние невесомости, которое в полной мере ощущают космонавты на орбите.

Невесомость — по сути, отсутствие веса. Для того чтобы такое было возможным, ускорение, с которым движется тело, должно быть равно пресловутому усорению g (9,8 Н/кг). Добиться такого эффекта проще всего на околоземной орбите. Гравитация, т.е. притяжение, по-прежнему действует на тело (спутник), однако она пренебрежимо мала. А ускорение дрейфующего по орбите спутника также стремится к нулю. Тут-то и возникает эффект отсутствия веса, поскольку тело вообще не соприкасается ни с опорой, ни с подвесом, а попросту парит в воздухе.

Частично с таким эффектом можно столкнуться при взлете самолета. На секунду возникает ощущение подвешенности в воздухе: в этот момент ускорение, с которым движется самолет, равно ускорению свободного падения.

Вновь возвращаясь к отличиям веса и массы, важно помнить, что формула веса тела отличается от формулы массы, которая выглядит как:

m=ρ/V,

то есть плотность вещества, деленная на его объем.

Вес и невесомость

Существует различие между силой тяжести mg→ и весом тела. Понятие веса широко используется в повседневной жизни.

Определение 1

Вес тела – это сила, с которой притягивается тело Землей и действует на опору или подвес, причем неподвижно и относительно опоры или подвеса.

На рисунке 1.11.1 изображено неподвижное тело.

Определение 2

Система отсчета, связанная с Землей, называется инерциальной.

Тело подвергается воздействию силы тяжести F→=mg→, направленной вертикально вниз, и силы упругости F→у=N→, действующей на него.

Реакция опоры

Определение 3

Силу N→ называют силой нормального давления или силой реакции опоры.

Действующие на тело силы всегда уравновешивают друг друга по формуле Fт→=-F→y=-N→. По третьему закону Ньютона имеем, что тело, подвергающееся воздействию силы P→ на опору, равняется по модулю силе реакции опоры направленной в противоположную сторону, тогда P→=-N→.

Из определения видно, что P→ называют весом тела. По соотношениям P→=Fт→=mg→ он равняется силе тяжести. Причем силы приложены к разным телам.

Реакция опоры

Рисунок 1.11.1. Вес тела и сила тяжести.  mg→ – сила тяжести, N→ – сила реакции опоры, P→– сила давления тела на опору (вес тела). mg→=-N→=P→.

Когда тело находится в неподвижном подвешенном состоянии на пружине, тогда роль силы реакции опоры относят к упругой силе пружины. При ее растяжении определяется вес тела и сила его притяжения Землей. Для этого применяют рычажные весы, сравнивая вес данного тела с весом гирь на равноплечем рычаге. Когда они находятся в равновесии, можно достичь равенства массы тела суммарной массой гирь. Значение ускорения свободного падения от этого не зависит.

Пример 1

Если поднять в гору на 1 км пружинные весы, то их показания изменятся на 0,0003

Вес тела в физике ℹ️ определение, формула, в чем измеряется, чем отличается от массы, от чего зависит и из-за чего возникает сила веса

Масса тела

Понятие и определения

Массой (обозначается буквой m) называют одну из физических величин, таких, как объём, определяющих количество вещества в объекте. Существует несколько явлений, которые позволяют её оценить. Среди теоретиков есть мнение, что некоторые из этих явлений могут быть независимы друг от друга, но в ходе экспериментов не обнаружено различий в результатах от способа измерений массы:

  • Инерционная. Определяется сопротивлением тела ускорению силой.
  • Активная и пассивная гравитационные. Измеряется силой взаимодействия гравитационных полей объектов.
Картинка

Человек чувствует свою массу находясь в контакте с другой поверхностью. Это может быть стулом, земной твердью, креслом космонавта во время ускорения в ракете. В этих примерах речь идёт о величине, которую физики называют весом, а субъективно воспринимающимся как кажущийся вес.

Он равен фактической измеряемой массе почти во всех бытовых случаях, за следующими исключениями:

  • Тело получает ускорение с вертикальной составляющей по отношению к земле. Например, в лифте или самолёте.
  • Кроме гравитации Земли, на тело действуют другие силы — центробежная, гравитационная другого от тела, архимедова.

Гравитационный подход

В большинстве случаев при определении понятия веса (принятое обозначение — P, по-латински пишется как pondus) оперируют так называемым гравитационным определением. В учебниках физики формула веса для тела описывает величину как силу, действующую на объект в результате земного притяжения. На языке математики это определяется выражением P=mg, где:

Картинка 1
  • m — масса;
  • g — гравитационное ускорение.

Из формулы вытекает, в чём измеряется вес: количественно он рассчитывается в тех же единицах, что и сила. Поэтому, согласно Международной системе единиц (СИ), P измеряется в Ньютонах.

Гравитационное поле Земли не является однородным и варьируется в пределах 0,5% по поверхности планеты. Соответственно, величина g также непостоянна. Общепринятым считается значение, называемое стандартным и равное 9,80665 м/с2. В различных местах на поверхности Земли фактическое ускорение свободного падения составляет (м/с2):

Экватор
  • экватор — 9,7803;
  • Сидней — 9,7968;
  • Москва — 9,8155;
  • Северный полюс — 9,8322.

В 1901 году третья Генеральная конференция по весам и мерам установила: вес означает количество такой же природы, что и сила, То есть определила его как вектор, так как сила — векторная величина. Тем не менее некоторые школьные учебники физики и сейчас принимают P за скаляр.

Контактное определение

Другой подход описывает явление с позиции понимания какую силу называют весом тела. В этом случае P определяется процедурой взвешивания и означает силу, с которой объект действует на опору. Этот подход предполагает различие результатов в зависимости от деталей.

Картинка 2

Например, объект в свободном падении оказывает незначительное воздействие на опору, однако, нахождение в невесомости не меняет вес в соответствии с гравитационным определением. Следовательно, подобный подход требует нахождения исследуемого тела в состоянии покоя, под действием стандартной гравитации без влияния центробежной силы вращения Земли.

Кроме того, контактное определение не исключает искажения от плавучести, которое уменьшает измеренный вес объекта. В воздухе на тела также действует сила, аналогичная влияющей на погружённое в воде. Для объектов с низкой плотностью эффект влияния становится более заметен. Примером тому может служить наполненный гелием воздушный шар, обладающий отрицательным весом. В общем смысле любое воздействие оказывает искажающий эффект на контактный вес, например:

Гравитация
  • Центробежная сила. Поскольку Земля вращается, объекты на поверхности подвергаются воздействию центробежных сил, более выраженных к экватору.
  • Гравитационное влияние других астрономических тел. Солнце и Луна притягивают объекты на земной поверхности в той или иной степени в зависимости от расстояния. Это влияние незначительно на бытовом уровне, но находит заметное отражение в таких явлениях, как морские приливы и отливы.
  • Магнетизм. Сильные магнитные поля способны заставить левитировать некоторые подверженные влиянию объекты.

История понятия

Древнегреческие философы

Понятия тяжести и лёгкости в качестве неотъемлемых свойств физических тел упоминаются ещё древнегреческими философами. Платон описывал вес как естественную тенденцию предметов к поиску себе подобных. Для Аристотеля лёгкость была свойством в восстановлении порядка основных элементов: воздуха, земли, огня и воды. Архимед рассматривал вес как качество, противоположное плавучести. Первое контактное определение было дано Евклидом, описывающее величину как лёгкость одной вещи по сравнению с другой, измеряемую балансом.

Когда средневековые учёные обнаружили, что на практике скорость падающего предмета со временем возрастала. Они изменили концепцию веса для сохранения причинно-следственных связей между явлениями. Понятие было разделено для тел в состоянии покоя и находящихся в гравитационном падении.

Значительных результатов в теории добился Галилей, пришедший к выводу, что величина пропорциональна количеству вещества в объекте, а не скорости его движения, как предполагала Аристотелева физика. Открытие Ньютоном закона всемирного тяготения привело к принципиальному отделению веса от фундаментального свойства объектов, связанных с инерцией. Факторы окружающей среды и плавучесть учёный считал искажением условий измерения. Для подобных обстоятельств он ввёл термин кажущийся вес.

Эйнштейн

В XX веке ньютоновские концепции абсолютного времени и пространства были поставлены под сомнение работами Эйнштейна. Теория относительности поставила всех наблюдателей, движущихся и ускоряющихся, в разные условия. Это привело к двусмысленности относительно того, что именно подразумевается под массой, которая вместе с гравитационной силой стала по существу зависящей от системы отсчёта величиной.

Неоднозначности, порождённые относительностью, привели к серьёзным дебатам в педагогическом сообществе о том, как определять вес для учеников и что им должно называться. Выбор стал лежать между пониманием его как силы, вызванной гравитацией Земли, и контактным определением, вытекающим из акта взвешивания.

Различия с массой

Путаница в понимании того, чем отличается масса от веса, свойственна для людей, не изучающих физику подробно. Этому есть простое объяснение — как правило, эти термины используются в повседневной жизни взаимозаменяемо. В общем случае, если тело находится на поверхности земли и неподвижно, значение массы будет равно скаляру веса в килограммах. Таблица, проясняющая разницу между понятиями, выглядит так:

Масса Вес
Является свойством материи. Постоянна всегда. Зависит от действия силы тяжести.
У материального объекта никогда не бывает равна нулю. Может быть равен нулю при определённых условиях.
Не меняется в зависимости от местоположения. Уменьшается или увеличивается в разных местах Земли или в зависимости от высоты над её поверхностью.
Является скалярной величиной. Вектор с направлением к центру земли или к другому гравитационному центру.
Может быть измерена с помощью баланса Измеряется с помощью пружинных весов.
Как правило, измеряется в граммах и килограммах. Единица у силы и веса одна — Ньютон (обозначается как Н)

Главное отличительное свойство массы заключается в том, что для классической динамики она является конкретной инвариантной величиной для каждого тела. Общая теория относительности описывает переход массы в энергию и наоборот.

Обычно численное значение между m и P на Земле строго пропорционально. На бытовом уровне чтобы узнать вес тела с известной массой, достаточно помнить, что объекты обычно весят в ньютонах приблизительно в 10 раз больше значения m в килограммах.

Способы измерения

Фактически вес можно измерить как силу реакции опоры на массу, появляющуюся в точке приложения. Величина возникновения этой силы по значению равна искомому P. Определить её можно с помощью пружинных весов. Поскольку сила тяжести, вызывающая фиксируемое отклонение на шкале, может варьироваться в разных местах, значения также будут отличаться. Для стандартизации измерительные приборы такого типа всегда калибруются на 9,80665 м/с2 в заводских условиях, а затем повторно в том месте, где будут использоваться.

Для измерения массы применяют рычажный механизм. Поскольку любые изменения в гравитации будут одинаково воздействовать на известные и неизвестные массы, балансный способ позволяет иметь в результате одинаковые значения в любом месте Земли. Весовые коэффициенты в этом случае калибруются и маркируются в единицах массы, поэтому балансировочный рычаг позволяет найти массу, сравнивая воздействие притяжения на искомый объект с воздействием на эталон.

Весы

При отсутствии гравитационного поля вдали от крупных астрономических тел, баланс рычага работать не будет, но, например, на Луне он покажет те же значения, что и на Земле. Некоторые подобные инструменты могут быть размечены в единицах веса, но, поскольку они калибруются на заводе-изготовителе для стандартной гравитации, то будут показывать P для условий, под которые они настроены.

Это значит, что рычажные весы не предназначены для измерения локальной силы тяжести, воздействующей на объект. Точный вес можно определить расчётным путём, умножив массу на значение локальной гравитации из соответствующих таблиц.

На других планетах

Планеты

В отличие от массы, вес тела в разных местах варьируется в зависимости от изменения значения гравитационного ускорения. Величина силы притяжения на других планетах, как и на Земле, зависит не только от их массы, но и от того, насколько удалена поверхность от центра тяжести.

В таблице ниже приведены сравнительные гравитационные ускорения на других планетах, Солнце и Луне. Под поверхностью для газовых гигантов (Юпитер, Сатурн, Уран и Нептун) подразумеваются их внешние облачные слои, для Солнца — фотосфера. Значения в таблице указаны без учёта центробежного вращения и отражают фактическую гравитацию, наблюдаемую вблизи полюсов.

Астрономический объект Насколько гравитация превышает земную Поверхностное ускорение м/с2
Солнце 27,9 274,1
Меркурий 0,377 3,703
Венера 0,9032 8,872
Земной шар 1 9,8226
Луна 0,1655 1,625
Марс 0,3895 3,728
Юпитер 2,64 25,93
Сатурн 1,139 11,19
Уран 0,917 9,01
Нептун 1,148 11,28

Для того чтобы получить собственный вес на другой планете, необходимо просто умножить его на число кратности из соответствующего столбика. Чем ближе к центру планеты делать замер, тем значение будет выше, и наоборот. Поэтому, несмотря на то что сила притяжения Юпитера из-за огромной массы в 316 раз превышает земную, вес на уровне облаков, из-за большой их удалённости от центра масс, выглядит не таким впечатляющим, как можно было бы ожидать.

Невесомость

Ещё один интересный эффект, называемый невесомостью, характерный не только для космоса. Его можно наблюдать при различных обстоятельствах и на Земле. Например, при свободном падении нет опоры, к которой была бы приложена сила, а значит вес будет равен нулю, несмотря на присутствие ускорения силы тяжести и массы.

Подобный феномен происходит с космонавтами Международной космической станции на орбите Земли. Фактически она всегда падает вместе со своими обитателями на поверхность планеты, поэтому её обитатели постоянно находятся в состоянии невесомости.

Таким образом, главное правило, объясняющее наблюдаемые феномены и позволяющее избежать путаницы с массой, выглядит так: значение P всегда измеряется с помощью контактных весов, помещённых между объектом и опорной поверхностью. Именно поэтому тело, размещённое на весах и падающее вместе с ними, не будет давить на прибор, а шкала, соответственно, покажет нулевое значение.


Сила веса, формулы

Определение 1

Вес представляет силу влияния тела на опору (подвес, или иную разновидность крепления), препятствующую падению, и возникающую в поле действия сил тяжести. Единицей измерения веса в СИ принят ньютон.

Понятие веса тела

Понятие «вес» как таковое в физике не считается необходимым. Так, больше говорится о массе или о силе тела. Более содержательной величиной считается сила воздействия на опору, знание которой может помочь, например, при оценке способности конструкции удержать исследуемое тело в заданных условиях.

Вес возможно измерить с помощью пружинных весов, служащих также для косвенного измерения массы при их соответствующем градуировании. В то же время, рычажные весы в этом не нуждаются, поскольку в такой ситуации сравнению подлежат массы, на которые воздействует равное ускорение свободного падения либо сумма ускорений в неинерциальных системах отсчета.

При взвешивании за счет технических пружинных весов, вариации ускорения свободного падения обычно не учитываются, поскольку из влияние зачастую оказывается меньше того, что требуется на практике в отношении точности взвешивания. В некоторой степени, на результатах измерений может отражаться сила Архимеда, при условии взвешивания на рычажных весах тел различной плотности и их сравнительных показателей.

Вес и масса в физике представляют различные понятия. Так, вес считается векторной величиной, с которой тело будет непосредственно воздействовать на горизонтальную опору либо вертикальный подвес. Масса в то же время представляет скалярную величину, меру инертности тела (инертную массу) или заряд гравитационного поля (гравитационную массу). У таких величин будут отличаться и единицы измерения (в СИ масса обозначена в килограммах, а вес— в ньютонах).

Возможны также ситуации с нулевым весом и также ненулевой массой (когда речь идет об одном и том же теле, к примеру, при невесомости вес каждого тела будет равным нулевому значению, а вот масса у всех окажется разной).

Важные формулы для расчета веса тела

Вес тела ($P$), которое покоится в инерциальной системе отсчёта, равнозначен силе тяжести, воздействующей на него, и пропорционален массе $m$, а также ускорению свободного падения $g$ в данной точке.

$P = mg$

Замечание 1

Ускорение свободного падения будет зависимым от высоты над земной поверхностью, а также от географических координат точки измерения.

Результатом суточного вращения Земли является широтное уменьшение веса. Так, на экваторе вес окажется меньшим, в сравнении с полюсами.

Другим фактором, влияющим на значение $g$, можно считать гравитационные аномалии, которые обусловлены особенностями строения земной поверхности. При местонахождении тела вблизи другой планеты (не Земли), ускорение свободного падения зачастую определяется за счет массы и размеров этой планеты.

Состояние отсутствия веса (невесомости) наступит в условиях отдаленности тела от притягивающего объекта или его пребывании в свободном падении, то есть в ситуации, когда

${g – w} = 0$.

Тело массой $m$, чей вес анализируется, может оказаться субъектом приложения определенных дополнительных сил, косвенно обусловленных фактом присутствия гравитационного поля, в частности, силы Архимеда и силы трения.

Отличие силы веса тела от силы тяжести

Замечание 2

Сила тяжести и вес представляют собой два различных понятия, участвующих непосредственно в теории гравитационного поля физики. Эти два совершенно разных понятия зачастую истолковывают неверно, используя их в неверном контексте.

Такая ситуация усугубляется еще и тем, что в стандартном понимании понятия массы (имеется в виду свойство материи) и веса также будут восприниматься как тождественные. Именно по этой причине правильное понимание тяжести и веса считается очень важным для научной среды.

Зачастую эти две практически аналогичные концепции применяются в формате взаимозаменяемых. Сила, которая направляется на объект со стороны Земли или другой планеты в нашей Вселенной (в более широком понимании — любого астрономического тела) будет представлять силу тяжести:

$Fт = mg$

Сила, с которой тело оказывает непосредственное воздействие на опору или вертикальный подвес и будет считаться весом тела, обозначаемым как $W$ и представляющим собой векторно направленную величину.

Атомы (молекулы) тела будут отталкиваться от частиц основания. Следствием такого процесса становится:

  • осуществление частичной деформации не только опоры, но и также объекта;
  • возникновение сил упругости;
  • изменение в определенных ситуациях (в незначительной степени) формы тела и опоры, что будет происходить на макроуровне;
  • возникновение силы реакции опоры при параллельном на поверхности тела возникновении силы упругости, что становится ответной реакцией на опору (это и будет представлять вес).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *